时间:2021-05-22
前言,在pytorch中,当服务器上的gpu被占用时,很多时候我们想先用cpu调试下代码,那么就需要进行gpu和cpu的切换。
把 device 作为一个可变参数,推荐使用argparse进行加载:
使用gpu时:
使用cpu时:
很多贴子中说,使用x.cuda() 和x.to('cuda') 虽然是等效的,但是x.cuda() 的缺点是无法动态切换cpu。然而,其实配合命令行参数CUDA_VISIBLE_DEVICES 是可以进行切换的。
在服务器上创建一个python脚本 t.py:
import torchprint(torch.cuda.device_count()) # 可用gpu数量print(torch.cuda.is_available()) # 是否可用gpu首先先看一下,正常运行的情况:
2
True
如果想要只使用某一块gpu,只需要在执行前加一个参数:
1
True
下面,如果我们想使用cpu呢?
0
False
因此,回归正题,当我们使用x.cuda()进行分配gpu时,只需要使用torch.cuda.is_available()加一个判断即可,当想使用cpu的时候在执行程序的命令行参数进行控制:
if torch.cuda.is_available(): x= x.cuda()到此这篇关于Pytorch如何切换 cpu和gpu的使用详解的文章就介绍到这了,更多相关Pytorch切换cpu和gpu内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
pytorch指定GPU在用pytorch写CNN的时候,发现一运行程序就卡住,然后cpu占用率100%,nvidia-smi查看显卡发现并没有使用GPU。所以
Pytorch多GPU运行设置可用GPU环境变量。例如,使用0号和1号GPU'os.environ["CUDA_VISIBLE_DEVICES"]='0,1'设
本文适合多GPU的机器,并且每个用户需要单独使用GPU训练。虽然pytorch提供了指定gpu的几种方式,但是使用不当的话会遇到outofmemory的问题,主
硬件:NVIDIA-GTX1080软件:Windows7、python3.6.5、pytorch-gpu-0.4.1一、基础知识将数据和网络都推到GPU,接上.
PyTorch随机数生成占用CPU过高的问题今天在使用pytorch的过程中,发现CPU占用率过高。经过检查,发现是因为先在CPU中生成了随机数,然后再调用.t