时间:2021-05-22
前言:好像感觉各种博客的最短路径python实现都花里胡哨的?输出不明显,唉,可能是因为不想读别人的代码吧(明明自己学过离散)。然后可能有些人是用字典实现的?的确字典的话,比较省空间。改天,也用字典试下。先贴个图吧。
然后再贴代码:
_=inf=999999#inf def Dijkstra_all_minpath(start,matrix): length=len(matrix)#该图的节点数 path_array=[] temp_array=[] path_array.extend(matrix[start])#深复制 temp_array.extend(matrix[start])#深复制 temp_array[start] = inf#临时数组会把处理过的节点的值变成inf,表示不是最小权值的节点了 already_traversal=[start]#start已处理 path_parent=[start]*length#用于画路径,记录此路径中该节点的父节点 while(len(already_traversal)<length): i= temp_array.index(min(temp_array))#找最小权值的节点的坐标 temp_array[i]=inf path=[]#用于画路径 path.append(str(i)) k=i while(path_parent[k]!=start):#找该节点的父节点添加到path,直到父节点是start path.append(str(path_parent[k])) k=path_parent[k] path.append(str(start)) path.reverse()#path反序产生路径 print(str(i)+':','->'.join(path))#打印路径 already_traversal.append(i)#该索引已经处理了 for j in range(length):#这个不用多说了吧 if j not in already_traversal: if (path_array[i]+matrix[i][j])<path_array[j]: path_array[j] = temp_array[j] =path_array[i]+matrix[i][j] path_parent[j]=i#说明父节点是i return path_array #领接矩阵adjacency_matrix=[[0,10,_,30,100], [10,0,50,_,_], [_,50,0,20,10], [30,_,20,0,60], [100,_,10,60,0] ]print(Dijkstra_all_minpath(4,adjacency_matrix))然后输出:
2: 4->2
3: 4->2->3
0: 4->2->3->0
1: 4->2->1
[60, 60, 10, 30, 0]
主要是这样输出的话比较好看,然后这样算是直接算一个点到所有点的最短路径吧。那么写下字典实现吧
输出:
2: 4->2
3: 4->2->3
0: 4->2->3->0
1: 4->2->1
{0: 60, 1: 60, 2: 10, 3: 30, 4: 0}
还行吧,有时间再看看networkx这个库怎么说。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
最短路径问题(python实现)解决最短路径问题:(如下三种算法)(1)迪杰斯特拉算法(Dijkstra算法)(2)弗洛伊德算法(Floyd算法)(3)SPFA
Floyd算法直接使用二维数组求出所有顶点到所有顶点的最短路径。D代表顶点到顶点的最短路径权值和的矩阵。P代表对应顶点的最小路径的前驱矩阵。以下程序在DEVC+
一心想学习算法,很少去真正静下心来去研究,前几天趁着周末去了解了最短路径的资料,用python写了一个最短路径算法。算法是基于带权无向图去寻找两个点之间的最短路
本文实例讲述了Python实现的多叉树寻找最短路径算法。分享给大家供大家参考,具体如下:多叉树的最短路径:思想:传入start和end两个目标值1找到从根节点到
Floyd算法:用于多源最短路径的求解,算出来的是所有的节点到其余各节点之间的最短距离。该算法的思路是:首先初始化距离矩阵,然后从第一个点开始逐渐更新矩阵点值。