python判断数字是否是超级素数幂

时间:2021-05-22

如果一个数字能表示成 p^q,且p是一个素数,q为大于1的正整数,则此数字就是超级素数幂。
param number: 测试该数字是否是超级素数幂
return: 如果不是就返回 False,如果是就返回 p 和 q 值
例如,输入125,返回(5,3)

代码:

import mathdef get_prime(number): ''' 寻找小于number的所有的质数,时间复杂度o(n^2) ''' if number <= 1: print 'Wrong given number.' return prime = [] for i in xrange(2, number+1): j = 2 while j < i: if i % j == 0: break j += 1 if j == i: prime.append(i) return primedef super_prime_power(number): scope = int(math.ceil(math.sqrt(number))) # 开根号除掉一部分不需要的数 prime_number = get_prime(scope) be_tested = [] for i in prime_number: # 先将无法被整数的排除掉 if number % i == 0: be_tested.append(i) for p in be_tested: q = 2 while p ** q <= number: if p ** q == number: return (p, q) q += 1 return Falseprint super_prime_power(999)

分析:

总的时间复杂度为o(sqrt(n)log n),再加上寻找质数花费的时间,总的时间复杂度为o(n^2 sqrt(n)log n)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章