时间:2021-05-22
删除有多行字符串的json文件中的离群值
def processHold(eachsubject,directory,newfile): filename = 'CMUDataCol/Hold/subject{0}.json'.format(eachsubject) # 原文件 with open(filename, 'r') as f: for jsonstr in f.readlines(): # 按行读取原文件 # 这里的情况是每一行为一类数值,该行内的数据相互比较找出是否有离群值 # 若存在离群值,则删除该行数据 data = json.loads(jsonstr) #计算四分位点 a = numpy.array(data) q1 = numpy.percentile(a, 25) q3 = numpy.percentile(a, 75) iqr = q3 - q1 # 找出异常值 i = 0 for item in zip(data): # 在正常值范围内时 i+1 if item <= q3 + (1.5*iqr) and item >= q1 - (1.5*iqr): i = i + 1 if i == 10: # 这里是因为我的json文件中每行data有10个元素(如果有更好的方法,请教我一下,谢谢您!) HoldTime = data with open(newfile, 'a') as f: # 将非离群数据存入新文件 json.dump(HoldTime, f) f.write('\n')补充知识:dataframe 离群值处理
离群值:远离数据主要部分的样本(极大值或极小值)
处理方式:
删除:直接删除离群样本
填充样本:使用box-plot定义变量的数值上下界,以上界填充极大值,以下界填充最小值
# 查看房价的离群情况df['average_price'].hist()plt.show()df[['average_price']].boxplot()plt.show()# 根据箱线图的上下限进行异常值的填充def boxplot_fill(col): # 计算iqr:数据四分之三分位值与四分之一分位值的差 iqr = col.quantile(0.75)-col.quantile(0.25) # 根据iqr计算异常值判断阈值 u_th = col.quantile(0.75) + 1.5*iqr # 上界 l_th = col.quantile(0.25) - 1.5*iqr # 下界 # 定义转换函数:如果数字大于上界则用上界值填充,小于下界则用下界值填充。 def box_trans(x): if x > u_th: return u_th elif x < l_th: return l_th else: return x return col.map(box_trans)# 填充效果查看boxplot_fill(df['average_price']).hist()# 进行赋值df['average_price'] = boxplot_fill(df['average_price'])plt.show()以上这篇python:删除离群值操作(每一行为一类数据)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
Tablelayout类以行和列的形式对控件进行管理,每一行为一个TableRow对象,或一个View控件。当为TableRow对象时,可在TableRow下添
1)将每一行的索引插入操作行中,即为每一行数据添加一个属性index使用el-table已经给处的方法:tableRowClassNamehtml中:js中:只
sed是linux轻量级流编辑器,用于行的操作,主要用来数据的选取、替换、删除、新增等。从输入文件中一次一行的读取,按顺序将列表中的命令应用到每一行,并将其编辑
该模块用perl的数组代表一个文件,文件的每一行对应数组的一个元素,第一行为元素0,第二回为1,...文件本身实际并不加载到内存,对数组元素的操作立刻作用到文件
项目需求:实现在页面中输出99乘法表。(要求:以每三行为一组,实现隔行变色(颜色为白,红,黄(也可自己定义)),鼠标滑过每一行,行背景颜色变为蓝色,鼠标离开又恢