时间:2021-05-22
神经网络可以用来模拟回归问题 (regression),实质上是单输入单输出神经网络模型,例如给下面一组数据,用一条线来对数据进行拟合,并可以预测新输入 x 的输出值。
一、详细解读
我们通过这个简单的例子来熟悉Keras构建神经网络的步骤:
1.导入模块并生成数据
首先导入本例子需要的模块,numpy、Matplotlib、和keras.models、keras.layers模块。Sequential是多个网络层的线性堆叠,可以通过向Sequential模型传递一个layer的list来构造该模型,也可以通过.add()方法一个个的将layer加入模型中。layers.Dense 意思是这个神经层是全连接层。
2.建立模型
然后用 Sequential 建立 model,再用 model.add 添加神经层,添加的是 Dense 全连接神经层。参数有两个,(注意此处Keras 2.0.2版本中有变更)一个是输入数据的维度,另一个units代表神经元数,即输出单元数。如果需要添加下一个神经层的时候,不用再定义输入的纬度,因为它默认就把前一层的输出作为当前层的输入。在这个简单的例子里,只需要一层就够了。
3.激活模型
model.compile来激活模型,参数中,误差函数用的是 mse均方误差;优化器用的是 sgd 随机梯度下降法。
4.训练模型
训练的时候用 model.train_on_batch 一批一批的训练 X_train, Y_train。默认的返回值是 cost,每100步输出一下结果。
5.验证模型
用到的函数是 model.evaluate,输入测试集的x和y,输出 cost,weights 和 biases。其中 weights 和 biases 是取在模型的第一层 model.layers[0] 学习到的参数。从学习到的结果你可以看到, weights 比较接近0.5,bias 接近 2。
Weights= [[ 0.49136472]]
biases= [ 2.00405312]
6.可视化学习结果
最后可以画出预测结果,与测试集的值进行对比。
二、完整代码
三、其他补充
1. numpy.linspace
numpy.linspace(start, stop, num=50, endpoint=True,retstep=False,dtype=None)
返回等差序列,序列范围在(start,end),生成num个元素的np数组,如果endpoint为False,则生成num+1个但是返回num个,retstep=True则在其后返回步长.
>>> np.linspace(2.0, 3.0, num=5)array([ 2. , 2.25, 2.5 , 2.75, 3. ])>>> np.linspace(2.0, 3.0, num=5, endpoint=False)array([ 2. , 2.2, 2.4, 2.6, 2.8])>>> np.linspace(2.0, 3.0, num=5, retstep=True)(array([ 2. , 2.25, 2.5 , 2.75, 3. ]), 0.25)以上这篇使用Keras实现简单线性回归模型操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本文实例讲述了Python实现的简单线性回归算法。分享给大家供大家参考,具体如下:用python实现R的线性模型(lm)中一元线性回归的简单方法,使用R的wom
本文使用TensorFlow实现最简单的线性回归模型,供大家参考,具体内容如下线性拟合y=2.7x+0.6,代码如下:importtensorflowastfi
使用keras实现性别识别,模型数据使用的是oarriaga/face_classification的模型实现效果准备工作在开始之前先要安装keras和tens
本文实例为大家分享了pytorch实现线性回归的具体代码,供大家参考,具体内容如下线性回归都是包括以下几个步骤:定义模型、选择损失函数、选择优化函数、训练数据、
本文实例讲述了基于PHP实现的多元线性回归模拟曲线算法。分享给大家供大家参考,具体如下:多元线性回归模型:y=b1x1+b2x2+b3x3+......+bnx