时间:2021-05-22
实际应用时可能比较想获取VGG中间层的输出,
那么就可以如下操作:
import numpy as npimport torchfrom torchvision import modelsfrom torch.autograd import Variableimport torchvision.transforms as transforms class CNNShow(): def __init__(self, model): self.model = model self.model.eval() self.created_image = self.image_for_pytorch(np.uint8(np.random.uniform(150, 180, (224, 224, 3)))) def show(self): x = self.created_image for index, layer in enumerate(self.model): print(index,layer) x = layer(x) def image_for_pytorch(self,Data): transform = transforms.Compose([ transforms.ToTensor(), # range [0, 255] -> [0.0,1.0] transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) ] ) imData = transform(Data) imData = Variable(torch.unsqueeze(imData, dim=0), requires_grad=True) return imData if __name__ == '__main__': pretrained_model = models.vgg16(pretrained=True).features CNN = CNNShow(pretrained_model) CNN.show()以上这篇pytorch获取vgg16-feature层输出的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
模型VGG,数据集cifar。对照这份代码走一遍,大概就知道整个pytorch的运行机制。来源定义模型:'''VGG11/13/16/19inPytorch.'
最近使用pytorch时,需要用到一个预训练好的人脸识别模型提取人脸ID特征,想到很多人都在用用vgg-face,但是vgg-face没有pytorch的模型,
首先这是VGG的结构图,VGG11则是红色框里的结构,共分五个block,如红框中的VGG11第一个block就是一个conv3-64卷积层:一,写VGG代码时
一个例子:print("Loadingvgg19weights...")vgg_model=VGG19(include_top=False,weights='i
前言:keras默认提供了如何获取某一个层的某一个节点的输出,但是没有提供如何获取某一个层的输出的接口,所以有时候我们需要获取某一个层的输出,则需要自己编写代码