时间:2021-05-22
使用Keras训练好的模型用来直接进行预测,这个时候我们该怎么做呢?【我这里使用的就是一个图片分类网络】
现在让我来说说怎么样使用已经训练好的模型来进行预测判定把
首先,我们已经又有了model模型,这个模型被保存为model.h5文件
然后我们需要在代码里面进行加载
model = load_model("model.h5")
假设我们自己已经写好了一个load_data函数【load_data最好是返回已经通过了把图片转成numpy的data,以及图片对应的label】
然后我们先加载我们的待预测的数据
data, labels = load_data(<the path of the data>)
然后我们就可以通过模型来预测了
predict = model.predict(data)
得到的predict就是预测的结果啦~
补充知识:keras利用vgg16模型直接预测图片类型时的坑
第一次使用keras中的预训练模型时,若本地没有模型对应的h5文件,程序会自动去github上下载,但国内下载github资源速度太慢,
可以选择直接去搜索下载,下载后将模型(h5文件)放入C:\Users\lovemoon\.keras\models
同样,如果是第一个用预训练模型预测输入图片,解码结果时也会下载一个Json文件,同样可以手动下载后放入C:\Users\lovemoon\.keras\models
以上这篇Keras 加载已经训练好的模型进行预测操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
对于使用已经训练好的模型,比如VGG,RESNET等,keras都自带了一个keras.applications.imagenet_utils.decode_p
1、有了已经训练好的模型参数,对这个模型的某些层做了改变,如何利用这些训练好的模型参数继续训练:pretrained_params=torch.load('Pr
pytorch预训练层的使用方法将其他地方训练好的网络,用到新的网络里面加载预训练网络1.原先已经训练好一个网络AutoEncoder_FC()2.首先加载该网
TensorFlow模型保存/载入我们在上线使用一个算法模型的时候,首先必须将已经训练好的模型保存下来。tensorflow保存模型的方式与sklearn不太一
因为需要,要重写训练好的keras模型,虽然只具备预测功能,但是发现还是有很多坑要趟过。其中Dropout这个坑,我记忆犹新。一开始,我以为预测时要保持和训练时