时间:2021-05-22
首先使用tf.where()将满足条件的数值索引取出来,在numpy中,可以直接用矩阵引用索引将满足条件的数值取出来,但是在tensorflow中这样是不行的。所幸,tensorflow提供了tf.gather()和tf.gather_nd()函数。
看下面这一段代码:
import tensorflow as tfsess = tf.Session()def get_tensor(): x = tf.random_uniform((5, 4)) ind = tf.where(x>0.5) y = tf.gather_nd(x, ind) return x, ind, y在上述代码中,输出分别是原始的tensor x,x中满足特定条件(此处为>0.5)的数值的索引,以及x中满足特定条件的数值。执行以下步骤,观察三个tensor对应的数值:
x, ind, y = get_tensor()x_, ind_, y_ = sess.run([x, ind, y])可以得到如下结果:
可以看到,上述结果中将tensor x中大于0.5的数值取出来组成了一个新的tensor y。
如果我们将代码中的tf.gather_nd替换成tf.gather会发生什么呢?由于结果不方便展示,这里不放结果了,tf.gather适用于index为一维的情况,在本例中,index为2维,如果选用tf.gather的话,对应的x, ind, y的维数分别如下:
x.shape = (5, 4)ind.shape = (9, 2)y.shape = (9, 2, 4)以上这篇tensorflow实现tensor中满足某一条件的数值取出组成新的tensor就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
最近在使用tensorflow进行网络训练的时候,需要提取出别人训练好的卷积核的部分层的数据。由于tensorflow中的tensor和python中的list
初学tensorflow,如果写的不对的,请更正,谢谢!tf.reshape(tensor,shape,name=None)函数的作用是将tensor变换为参数
问题tensor详细数值不能直接print打印:importtensorflowastfx=tf.constant(1)printx输出:Tensor("Con
tf.reduce_mean函数用于计算张量tensor沿着指定的数轴(tensor的某一维度)上的的平均值,主要用作降维或者计算tensor(图像)的平均值。
一、作用创建一个新的Tensor,该Tensor的type和device都和原有Tensor一致,且无内容。二、使用方法如果随机定义一个大小的Tensor,则新