python 中值滤波,椒盐去噪,图片增强实例

时间:2021-05-22

受光照、气候、成像设备等因素的影响,灰度化后的图像存在噪声和模糊干扰,直接影响到下一步的文字识别,因此,需要对图像进行增强处理。图片预处理中重要一环就是椒盐去澡,通常用到中值滤波器进行处理,效果很好。中值滤波器是一种非线性滤波器,其基本原理是把数字图像中某点的值用其领域各点值的中值代替。

如求点[i,j]的灰度值计算方法为:

(1)按灰度值顺序排列[i,j]领域中的像素点;

(2)取排序像素集的中间值作为[i,j]的灰度值。中值滤波技术能有效抑制噪声。

直接上代码,希望给大家有帮助:

import numpy as npimport cv2import tensorflow as tffrom PIL import Imageimport osimport scipy.signal as signalinput_images = np.zeros((300, 300))filename = "D:\字母图库\F\P80627-112853.jpg"print(filename)img = Image.open(filename).resize((300, 300)).convert('L')width = img.size[0]height = img.size[1]for h in range(0, height): for w in range(0, width): if img.getpixel((h, w)) < 128: input_images[w, h] = 0 else: input_images[w, h] = 1cv2.imshow("test1111", input_images)data = signal.medfilt2d(np.array(img), kernel_size=3) # 二维中值滤波for h in range(0, height): for w in range(0, width): if data[h][w] < 128: input_images[w, h] = 0 else: input_images[w, h] = 1cv2.imshow("test2222", input_images)data = signal.medfilt2d(np.array(img), kernel_size=5) # 二维中值滤波for h in range(0, height): for w in range(0, width): if data[h][w] < 128: input_images[w, h] = 0 else: input_images[w, h] = 1cv2.imshow("test3333", input_images)cv2.waitKey(0)

以上这篇python 中值滤波,椒盐去噪,图片增强实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章