时间:2021-05-22
熟悉pandas的pythoner 应该知道给dataframe增加一列很容易,直接以字典形式指定就好了,pyspark中就不同了,摸索了一下,可以使用如下方式增加
from pyspark import SparkContextfrom pyspark import SparkConffrom pypsark.sql import SparkSessionfrom pyspark.sql import functionsspark = SparkSession.builder.config(conf=SparkConf()).getOrCreate()data = [['Alice', 19, 'blue', '["Alice", 19, "blue"]'], ['Jane', 20, 'green', '["Jane", 20, "green"]'], ['Mary', 21, 'blue', '["Mary", 21, "blue"]'], ]frame = spark.createDataFrame(data, schema=["name", "age", "eye_color", "detail"])frame.cache()frame.show()+-----+---+---------+--------------------+
| name|age|eye_color| detail|
+-----+---+---------+--------------------+
|Alice| 19| blue|["Alice", 19, "bl...|
| Jane| 20| green|["Jane", 20, "gre...|
| Mary| 21| blue|["Mary", 21, "blue"]|
+-----+---+---------+--------------------+
1、 增加常数项
+-----+---+---------+--------------------+-------+
| name|age|eye_color| detail|contant|
+-----+---+---------+--------------------+-------+
|Alice| 19| blue|["Alice", 19, "bl...| 10|
| Jane| 20| green|["Jane", 20, "gre...| 10|
| Mary| 21| blue|["Mary", 21, "blue"]| 10|
+-----+---+---------+--------------------+-------+
2、简单根据某列进行计算
2.1 使用 withColumn
+-----+---+---------+--------------------+-----------+
| name|age|eye_color| detail|name_length|
+-----+---+---------+--------------------+-----------+
|Alice| 19| blue|["Alice", 19, "bl...| 5|
| Jane| 20| green|["Jane", 20, "gre...| 4|
| Mary| 21| blue|["Mary", 21, "blue"]| 4|
+-----+---+---------+--------------------+-----------+
2.2 使用 select
+-----+-----------+
| name|name_length|
+-----+-----------+
|Alice| 5|
| Jane| 4|
| Mary| 4|
+-----+-----------+
2.3 使用 selectExpr
+-----+-----------+
| name|name_length|
+-----+-----------+
|Alice| 5|
| Jane| 4|
| Mary| 4|
+-----+-----------+
3、定制化根据某列进行计算
比如我想对某列做指定操作,但是对应的函数没得咋办,造,自己造~
frame4 = frame.withColumn("detail_length", functions.UserDefinedFunction(lambda obj: len(json.loads(obj)))(frame.detail))# ordef length_detail(obj): return len(json.loads(obj))frame4 = frame.withColumn("detail_length", functions.UserDefinedFunction(length_detail)(frame.detail))frame4.show()+-----+---+---------+--------------------+-------------+
| name|age|eye_color| detail|detail_length|
+-----+---+---------+--------------------+-------------+
|Alice| 19| blue|["Alice", 19, "bl...| 3|
| Jane| 20| green|["Jane", 20, "gre...| 3|
| Mary| 21| blue|["Mary", 21, "blue"]| 3|
+-----+---+---------+--------------------+-------------+
到此这篇关于pyspark给dataframe增加新的一列的实现示例的文章就介绍到这了,更多相关pyspark dataframe增加列内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
场景如下:现在有一个dataframe,其中一列为score,值从0-100,df:score988837688633现在需要增加一列level,给这些分数分类
背景:dataFrame的数据,想对某一个列做逻辑处理,生成新的列,或覆盖原有列的值下面例子中的df均为pandas.DataFrame()的数据1、增加新列,
Python实现按某一列关键字分组,并计算各列的平均值,并用该值填充该分类该列的nan值。DataFrame数据格式fillna方式实现groupby方式实现D
Dataframe结构放在numpy来看应该是二维矩阵的形式,每一列是一个特征,上面会有个列标题,每一行是一个样本。对Dataframe结构的某一列进行排序方法
有时候我们需要添加一列自动增加数字的列,可以用下面两种方法:第一种>>>importpandasaspd>>>df=pd.DataFrame([{'name':