时间:2021-05-22
虽然 prometheus 已有大量可直接使用的 exporter 可供使用,以满足收集不同的监控指标的需要。例如,node exporter 可以收集机器 cpu,内存等指标,cadvisor 可以收集容器指标。然而,如果需要收集一些定制化的指标,还是需要我们编写自定义的指标。
本文讲述如何使用 prometheus python 客户端库和 flask 编写 prometheus 自定义指标。
安装依赖库
我们的程序依赖于flask 和prometheus client 两个库,其 requirements.txt 内容如下:
flask==1.1.2
prometheus-client==0.8.0
运行 flask
我们先使用 flask web 框架将 /metrics 接口运行起来,再往里面添加指标的实现逻辑。
#!/usr/bin/env python# -*- coding:utf-8 -*-from flask import Flaskapp = Flask(__name__)@app.route('/metrics')def hello(): return 'metrics'if __name__ == '__main__': app.run(host='0.0.0.0', port=5000)打开浏览器,输入 http://127.0.0.1:5000/metrics,按下回车后浏览器显示 metrics 字符。
编写指标
Prometheus 提供四种指标类型,分别为 Counter,Gauge,Histogram 和 Summary。
Counter
Counter 指标只增不减,可以用来代表处理的请求数量,处理的任务数量,等。
可以使用 Counter 定义一个 counter 指标:
counter = Counter('my_counter', 'an example showed how to use counter')
其中,my_counter 是 counter 的名称,an example showed how to use counter 是对该 counter 的描述。
使用 counter 完整的代码如下:
#!/usr/bin/env python# -*- coding:utf-8 -*-from flask import Flask, Responsefrom prometheus_client import Counter, generate_latestapp = Flask(__name__)counter = Counter('my_counter', 'an example showed how to use counter')@app.route('/metrics')def hello(): counter.inc(1) return Response(generate_latest(counter), mimetype='text/plain')if __name__ == '__main__': app.run(host='0.0.0.0', port=5000)访问 http://127.0.0.1:5000/metrics,浏览器输出:
# HELP my_counter_total an example showed how to use counter
# TYPE my_counter_total counter
my_counter_total 6.0
# HELP my_counter_created an example showed how to use counter
# TYPE my_counter_created gauge
my_counter_created 1.5932468510424378e+09
在定义 counter 指标时,可以定义其 label 标签:
counter = Counter('my_counter', 'an example showed how to use counter', ['machine_ip'])
在使用时指定标签的值:
counter.labels('127.0.0.1').inc(1)
这时浏览器会将标签输出:
my_counter_total{machine_ip="127.0.0.1"} 1.0
Gauge
Gauge 指标可增可减,例如,并发请求数量,cpu 占用率,等。
可以使用 Gauge 定义一个 gauge 指标:
registry = CollectorRegistry()gauge = Gauge('my_gauge', 'an example showed how to use gauge', ['machine_ip'], registry=registry)为使得 /metrics 接口返回多个指标,我们引入了 CollectorRegistry ,并设置 gauge 的 registry 属性。
使用 set 方法设置 gauge 指标的值:
gauge.labels('127.0.0.1').set(2)
访问 http://127.0.0.1:5000/metrics,浏览器增加输出:
# HELP my_gauge an example showed how to use gauge
# TYPE my_gauge gauge
my_gauge{machine_ip="127.0.0.1"} 2.0
Histogram
Histogram 用于统计样本数值落在不同的桶(buckets)里面的数量。例如,统计应用程序的响应时间,可以使用 histogram 指标类型。
使用 Histogram 定义一个 historgram 指标:
buckets = (100, 200, 300, 500, 1000, 3000, 10000, float('inf'))histogram = Histogram('my_histogram', 'an example showed how to use histogram', ['machine_ip'], registry=registry, buckets=buckets)如果我们不使用默认的 buckets,可以指定一个自定义的 buckets,如上面的代码所示。
使用 observe() 方法设置 histogram 的值:
histogram.labels('127.0.0.1').observe(1001)
访问 /metrics 接口,输出:
# HELP my_histogram an example showed how to use histogram
# TYPE my_histogram histogram
my_histogram_bucket{le="100.0",machine_ip="127.0.0.1"} 0.0
my_histogram_bucket{le="200.0",machine_ip="127.0.0.1"} 0.0
my_histogram_bucket{le="300.0",machine_ip="127.0.0.1"} 0.0
my_histogram_bucket{le="500.0",machine_ip="127.0.0.1"} 0.0
my_histogram_bucket{le="1000.0",machine_ip="127.0.0.1"} 0.0
my_histogram_bucket{le="3000.0",machine_ip="127.0.0.1"} 1.0
my_histogram_bucket{le="10000.0",machine_ip="127.0.0.1"} 1.0
my_histogram_bucket{le="+Inf",machine_ip="127.0.0.1"} 1.0
my_histogram_count{machine_ip="127.0.0.1"} 1.0
my_histogram_sum{machine_ip="127.0.0.1"} 1001.0
# HELP my_histogram_created an example showed how to use histogram
# TYPE my_histogram_created gauge
my_histogram_created{machine_ip="127.0.0.1"} 1.593260699767071e+09
由于我们设置了 histogram 的样本值为 1001,可以看到,从 3000 开始,xxx_bucket 的值为 1。由于只设置一个样本值,故 my_histogram_count 为 1 ,且样本总数 my_histogram_sum 为 1001。
读者可以自行试验几次,慢慢体会 histogram 指标的使用,远比看网上的文章理解得快。
Summary
Summary 和 histogram 类型类似,可用于统计数据的分布情况。
定义 summary 指标:
summary = Summary('my_summary', 'an example showed how to use summary', ['machine_ip'], registry=registry)
设置 summary 指标的值:
summary.labels('127.0.0.1').observe(randint(1, 10))
访问 /metrics 接口,输出:
# HELP my_summary an example showed how to use summary
# TYPE my_summary summary
my_summary_count{machine_ip="127.0.0.1"} 4.0
my_summary_sum{machine_ip="127.0.0.1"} 16.0
# HELP my_summary_created an example showed how to use summary
# TYPE my_summary_created gauge
my_summary_created{machine_ip="127.0.0.1"} 1.593263241728389e+09
附:完整源代码
#!/usr/bin/env python# -*- coding:utf-8 -*-from random import randintfrom flask import Flask, Responsefrom prometheus_client import Counter, Gauge, Histogram, Summary, \ generate_latest, CollectorRegistryapp = Flask(__name__)registry = CollectorRegistry()counter = Counter('my_counter', 'an example showed how to use counter', ['machine_ip'], registry=registry)gauge = Gauge('my_gauge', 'an example showed how to use gauge', ['machine_ip'], registry=registry)buckets = (100, 200, 300, 500, 1000, 3000, 10000, float('inf'))histogram = Histogram('my_histogram', 'an example showed how to use histogram', ['machine_ip'], registry=registry, buckets=buckets)summary = Summary('my_summary', 'an example showed how to use summary', ['machine_ip'], registry=registry)@app.route('/metrics')def hello(): counter.labels('127.0.0.1').inc(1) gauge.labels('127.0.0.1').set(2) histogram.labels('127.0.0.1').observe(1001) summary.labels('127.0.0.1').observe(randint(1, 10)) return Response(generate_latest(registry), mimetype='text/plain')if __name__ == '__main__': app.run(host='0.0.0.0', port=5000)参考资料
https://github.com/prometheus/client_python
https://prometheus.io/docs/concepts/metric_types/
https://prometheus.io/docs/instrumenting/writing_clientlibs/
https://prometheus.io/docs/instrumenting/exporters/
https://pypi.org/project/prometheus-client/
https://prometheus.io/docs/concepts/metric_types/
http:///docs/prometheus/v2.14/best_practices/histogram_and_summary.html
https://prometheus.io/docs/practices/histograms/
总结
到此这篇关于使用 prometheus python 库编写自定义指标的文章就介绍到这了,更多相关prometheus python 库编写自定义指标内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
一、prometheus基本原理介绍prometheus是基于metric采样的监控,可以自定义监控指标,如:服务每秒请求数、请求失败数、请求执行时间等,每经过
1.添加自定义机器人2.编写python代码请求钉钉机器人所给的webhook钉钉自定义机器人官方文档安全方式使用加签的方式:第一步,把timestamp+"\
如果您对旧的JenkinsUI,其字体和图标不满意,则可以使用带有自定义徽标的自定义CSS样式对Jenkins进行改头换面。自定义CSS样式会更加美观些。自定义
本例子使用自定义控件方法实现,数据库使用的是SQLServer,实现过程如下:1、新建一个自定义控件,命名为:PageControl。2、PageControl
如何实现自定义一个异常python内置了许多异常类,为编写代码划定红线,才使调试代码时能及时发现错误。那么我们编写一个模块也可以为使用此模块者划定红线,来约束使