时间:2021-05-22
今天使用shuffleNetV2+,使用自己的数据集,遇到了loss是nan的情况,而且top1精确率出现断崖式上升,这显示是不正常的。
在网上查了下解决方案。我的问题是出在学习率上了。
我自己做的样本数据集比较小,就三类,每类大概三百多张,初始学习率是0.5。后来设置为0.1就解决了。
按照解决方案上写的。出现nan的情况还有以下几种:
学习率太大,但是样本数据集又很小。(我的情况)
自定义的loss除以了一个很小的数字,小到接近0。
数据不干净,数据本身就有nan,可以用numpy.isnan检查。
target,即label是大于等于0的。从1到类别数目-1变化。
以上这篇Pytorch训练过程出现nan的解决方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
用的pytorch来训练deeplabv3+在做deeplabv3+的过程中,我的训练图片是8位的,如下图:8位的:24位的:这样虽然在训练过程中能够正常训练。
在pytorch训练过程中可以通过下面这一句代码来打印当前学习率print(net.optimizer.state_dict()['param_groups']
1、epochKeras官方文档中给出的解释是:“简单说,epochs指的就是训练过程接中数据将被“轮”多少次”(1)释义:训练过程中当一个完整的数据集通过了神
1、epochKeras官方文档中给出的解释是:“简单说,epochs指的就是训练过程接中数据将被“轮”多少次”(1)释义:训练过程中当一个完整的数据集通过了神
记录训练过程history=model.fit(X_train,Y_train,epochs=epochs,batch_size=batch_size,vali