时间:2021-05-22
今天在使用PyTorch中Dataset遇到了一个问题。先看代码
class psDataset(Dataset): def __init__(self, x, y, transforms = None): super(Dataset, self).__init__() self.x = x self.y = y if transforms == None: self.transforms = Compose([Resize((224, 224)), ToTensor()]) else: self.transforms = transforms def __len__(self): return len(self.x) def __getitem__(self, idx): img = Image.open(self.x[idx]) img = self.transforms(img) return img, torch.tensor([[self.y[idx]]])结果运行时报错:RuntimeError: invalid argument 0: Sizes of tensors must match except in dimension 0. Got 3 and 1 in dimension 1 at /opt/conda/conda-bld/pytorch_1522182087074/work/torch/lib/TH/generic/THTensorMath.c:2897
Google了一下发现是这样的:读入的图片有些是灰度图(1个通道),绝大多数是RGB图片(3通道),也有些是带透明度的(4通道)
。这导致在读入后最后一个维度(通道数)不一致(可能是1、3或者4)。
Dataloader在制作batch data时,tensor的shape必须一样,就报了这个错误。解决的方法是:img = img.convert(“RGB”)。完
整代码如下:
class psDataset(Dataset): def __init__(self, x, y, transforms = None): super(Dataset, self).__init__() self.x = x self.y = y if transforms == None: self.transforms = Compose([Resize((224, 224)), ToTensor()]) else: self.transforms = transforms def __len__(self): return len(self.x) def __getitem__(self, idx): img = Image.open(self.x[idx]) img = img.convert("RGB") img = self.transforms(img) return img, torch.tensor([[self.y[idx]]])以上这篇PyTorch 解决Dataset和Dataloader遇到的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
关于Pytorch中怎么自定义Dataset数据集类、怎样使用DataLoader迭代加载数据,这篇官方文档已经说得很清楚了,这里就不在赘述。现在的问题:有的时
DataLoader完整的参数表如下:classtorch.utils.data.DataLoader(dataset,batch_size=1,shuffle
PyTorch中数据读取的一个重要接口是torch.utils.data.DataLoader,该接口定义在dataloader.py脚本中,只要是用PyTor
在使用pytorch训练模型,经常需要加载大量图片数据,因此pytorch提供了好用的数据加载工具Dataloader。为了实现小批量循环读取大型数据集,在Da
前言众所周知,Dataset和Dataloder是pytorch中进行数据载入的部件。必须将数据载入后,再进行深度学习模型的训练。在pytorch的一些案例教学