时间:2021-05-22
卷积在pytorch中有两种实现,一种是torch.nn.Conv2d(),一种是torch.nn.functional.conv2d(),这两种方式本质都是执行卷积操作,对输入的要求也是一样的,首先需要输入的是一个torch.autograd.Variable()的类型,大小是(batch,channel, H,W),其中batch表示输入的一批数据的数目,channel表示输入的通道数。
一般一张彩色的图片是3,灰度图片是1,而卷积网络过程中的通道数比较大,会出现几十到几百的通道数。H和W表示输入图片的高度和宽度,比如一个batch是32张图片,每张图片是3通道,高和宽分别是50和100,那么输入的大小就是(32,3,50,100)。
如下代码是卷积执行soble边缘检测算子的实现:
import torchimport numpy as npfrom torch import nnfrom PIL import Imagefrom torch.autograd import Variableimport torch.nn.functional as F def nn_conv2d(im): # 用nn.Conv2d定义卷积操作 conv_op = nn.Conv2d(1, 1, 3, bias=False) # 定义sobel算子参数 sobel_kernel = np.array([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]], dtype='float32') # 将sobel算子转换为适配卷积操作的卷积核 sobel_kernel = sobel_kernel.reshape((1, 1, 3, 3)) # 给卷积操作的卷积核赋值 conv_op.weight.data = torch.from_numpy(sobel_kernel) # 对图像进行卷积操作 edge_detect = conv_op(Variable(im)) # 将输出转换为图片格式 edge_detect = edge_detect.squeeze().detach().numpy() return edge_detect def functional_conv2d(im): sobel_kernel = np.array([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]], dtype='float32') # sobel_kernel = sobel_kernel.reshape((1, 1, 3, 3)) weight = Variable(torch.from_numpy(sobel_kernel)) edge_detect = F.conv2d(Variable(im), weight) edge_detect = edge_detect.squeeze().detach().numpy() return edge_detect def main(): # 读入一张图片,并转换为灰度图 im = Image.open('./cat.jpg').convert('L') # 将图片数据转换为矩阵 im = np.array(im, dtype='float32') # 将图片矩阵转换为pytorch tensor,并适配卷积输入的要求 im = torch.from_numpy(im.reshape((1, 1, im.shape[0], im.shape[1]))) # 边缘检测操作 # edge_detect = nn_conv2d(im) edge_detect = functional_conv2d(im) # 将array数据转换为image im = Image.fromarray(edge_detect) # image数据转换为灰度模式 im = im.convert('L') # 保存图片 im.save('edge.jpg', quality=95) if __name__ == "__main__": main()原图片:cat.jpg
结果图片:edge.jpg
以上这篇Pytorch 实现sobel算子的卷积操作详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
关于Pytorch的MNIST数据集的预处理详解MNIST的准确率达到99.7%用于MNIST的卷积神经网络(CNN)的实现,具有各种技术,例如数据增强,丢失,
本文实例讲述了C#图像处理之边缘检测(Sobel)的方法。分享给大家供大家参考。具体如下://定义sobel算子函数privatestaticBitmapsob
在opencv中scharr滤波器是配合sobel算子的运算而存在的。当sobel内核为3时,结果可能会产生比较明显的误差,针对这一问题,Opencv提供了sc
一卷积操作:在pytorch搭建起网络时,大家通常都使用已有的框架进行训练,在网络中使用最多就是卷积操作,最熟悉不过的就是torch.nn.Conv2d(in_
本文为大家讲解了pytorch实现CNN卷积神经网络,供大家参考,具体内容如下我对卷积神经网络的一些认识卷积神经网络是时下最为流行的一种深度学习网络,由于其具有