时间:2021-05-22
利用Python+opencv实现从摄像头捕获图像,识别其中的人眼/人脸,并打上马赛克。
系统环境:Windows 7 + Python 3.6.3 + opencv 3.4.2
一、系统、资源准备
要想达成该目标,需要满足一下几个条件:
二、动手做
1、导入相关包、设置视频格式、调用摄像头、指定分类器
import numpy as np import cv2 fourcc = cv2.VideoWriter_fourcc("D", "I", "B", " ")out = cv2.VideoWriter('frame_mosic.MP4',fourcc, 20.0, (640,480)) cv2.namedWindow("CaptureFace")#调用摄像头cap=cv2.VideoCapture(0)#人眼识别器分类器classfier=cv2.CascadeClassifier("../haarcascades/haarcascade_eye_tree_eyeglasses.xml")2、逐帧调用图像,并实时处理
从摄像头读取一帧图像后,先转化为灰度图像,然后利用指定的分类器识别出我们需要的内容,接着对该部分内容利用高斯噪声进行覆盖,以达成马赛克的目的。
代码如下:
while cap.isOpened(): read,frame=cap.read() if not read: break #灰度转换 grey=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY) #人脸检测 Rects = classfier.detectMultiScale(grey, scaleFactor = 1.2, minNeighbors = 3, minSize = (32, 32)) if len(Rects) > 0: for Rect in Rects: x, y, w, h = Rect # 打码:使用高斯噪声替换识别出来的人眼所对应的像素值 frame[y+10:y+h-10,x:x+w,0]=np.random.normal(size=(h-20,w)) frame[y+10:y+h-10,x:x+w,1]=np.random.normal(size=(h-20,w)) frame[y+10:y+h-10,x:x+w,2]=np.random.normal(size=(h-20,w)) cv2.imshow("CaptureFace",frame) if cv2.waitKey(5)&0xFF==ord('q'): break # 保存视频 out.write(frame)#释放相关资源cap.release()out.release()cv2.destroyAllWindows()3、观察效果
代码调用摄像头并在窗口进行了显示,可以实时观察到图像处理的效果,如图:
并将结果保存为视频,方便随时查看:
完整代码如下:
# -*- coding: utf-8 -*- import numpy as np import cv2 fourcc = cv2.VideoWriter_fourcc("D", "I", "B", " ")out = cv2.VideoWriter('frame_mosic.MP4',fourcc, 20.0, (640,480)) cv2.namedWindow("CaptureFace")#调用摄像头cap=cv2.VideoCapture(0)#人眼识别器分类器classfier=cv2.CascadeClassifier("../haarcascades/haarcascade_eye_tree_eyeglasses.xml")while cap.isOpened(): read,frame=cap.read() if not read: break #灰度转换 grey=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY) #人脸检测 Rects = classfier.detectMultiScale(grey, scaleFactor = 1.2, minNeighbors = 3, minSize = (32, 32)) if len(Rects) > 0: for Rect in Rects: x, y, w, h = Rect # 打码:使用高斯噪声替换识别出来的人眼所对应的像素值 frame[y+10:y+h-10,x:x+w,0]=np.random.normal(size=(h-20,w)) frame[y+10:y+h-10,x:x+w,1]=np.random.normal(size=(h-20,w)) frame[y+10:y+h-10,x:x+w,2]=np.random.normal(size=(h-20,w)) cv2.imshow("CaptureFace",frame) if cv2.waitKey(5)&0xFF==ord('q'): break # 保存视频 out.write(frame)#释放相关资源cap.release()out.release()cv2.destroyAllWindows()利用opencv提供Python接口,可以很方便的进行图像、视频处理方面的学习研究,实在是很方便。这里把近期所学做个简单应用,后续再学习更深入的知识。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
Python调用OpenCV实现人脸识别,供大家参考,具体内容如下硬件环境:Win1064位软件环境:Python版本:2.7.3IDE:JetBrainsPy
一、准备依赖库pipinstalldlibpippython-opencv二、代码实现#coding:utf-8"""从视屏中识别人脸,并实时标出面部特征点""
本文实例讲述了Python基于OpenCV库Adaboost实现人脸识别功能。分享给大家供大家参考,具体如下:以前用Matlab写神经网络的面部眼镜识别算法,研
下午的时候,配好了OpenCV的Python环境,OpenCV的Python环境搭建。于是迫不及待的想体验一下opencv的人脸识别,如下文。必备知识Haar-
本文采用OpenCV3和Python3来实现静态图片的人脸识别,采用的是Haar文件级联。首先需要将OpenCV3源代码中找到data文件夹下面的haarcas