时间:2021-05-22
你好,我是林骥。
斜率图,可以快速展现两组数据之间各维度的变化,特别适合用于对比两个时间点的数据。
比如说,为了对比分析某产品不同功能的用户满意度,经过问卷调查和数据统计,得到下面这个调查结果:
你不妨自己先思考一下,如何对这组数据进行可视化,才能让信息传递变得更加高效?
下面是我用 matplotlib 制作的图表:
从图中可以直观地看出,功能 C 的用户满意度明显下降,我们用比较鲜明的橙色来表示,以便引起观众重点关注;功能 D 和功能 E 的用户满意度明显提升,我们用蓝色表示,代表数据正在向好的方向发展;功能 A 和功能 B 的用户满意度变化不大,我们用浅灰色表示,以便削弱观众对这两个功能的注意力,把更多的精力用于分析用户满意度明显下降的功能点,从而让图表起到提升信息传递效率的目的。
首先,导入所需的库,并设置中文字体和定义颜色等。
# 导入所需的库import numpy as npimport pandas as pdimport matplotlib as mplimport matplotlib.pyplot as pltimport matplotlib.image as image# 正常显示中文标签mpl.rcParams['font.sans-serif'] = ['SimHei']# 自动适应布局mpl.rcParams.update({'figure.autolayout': True})# 正常显示负号mpl.rcParams['axes.unicode_minus'] = False# 定义颜色,主色:蓝色,辅助色:灰色,互补色:橙色c = {'蓝色':'#00589F', '深蓝色':'#003867', '浅蓝色':'#5D9BCF', '灰色':'#999999', '深灰色':'#666666', '浅灰色':'#CCCCCC', '橙色':'#F68F00', '深橙色':'#A05D00', '浅橙色':'#FBC171'}其次,从 Excel 文件中读取随机模拟的数据,并定义画图用的数据。
# 数据源路径filepath='./data/问卷调查结果.xlsx'# 读取 Excel文件df = pd.read_excel(filepath, index_col='调查年度')# 定义画图用的数据category_names = df.columnslabels = df.indexdata = df.valuesdata_cum = data.cumsum(axis=1)接下来,开始用「面向对象」的方法进行画图。
# 使用「面向对象」的方法画图,定义图片的大小fig, ax=plt.subplots(figsize=(6, 6))# 设置背景颜色fig.set_facecolor('w')ax.set_facecolor('w')# 设置标题ax.set_title('\n用户满意度随时间的变化\n', fontsize=26, loc='left', color=c['深灰色'])# 定义颜色category_colors = [c['浅灰色'], c['浅灰色'], c['橙色'], c['蓝色'], c['蓝色']]# 画斜率图for i, color in zip(np.arange(len(df.columns)), category_colors): ax.plot(df.index, df.iloc[:, i], marker='o', color=color) # 设置数据标签及其文字颜色 ax.text(-0.03, df.iloc[0, i], df.columns[i] + ' ' + '{:.0%}'.format(df.iloc[0, i]), ha='right', va='center', color=color, fontsize=16) ax.text(1.06, df.iloc[1, i], '{:.0%}'.format(df.iloc[1, i]), ha='left', va='center', color=color, fontsize=16)# 设置 Y 轴刻度范围ax.set_ylim(df.values.min()-0.02, df.values.max()+0.01)# 隐藏 Y 轴ax.yaxis.set_visible(False)# 隐藏边框ax.spines['top'].set_visible(False)ax.spines['right'].set_visible(False)ax.spines['left'].set_visible(False)ax.spines['bottom'].set_visible(False)# 隐藏 X 轴的刻度线ax.tick_params(axis='x', which='major', length=0)# 设置坐标标签字体大小和颜色ax.tick_params(labelsize=16, colors=c['灰色'])plt.show()运行之后,便得到上面那张图。
你可以前往 https://github.com/linjiwx/mp 下载画图用的数据和完整代码。
对于同一组数据,不同的人可能会有不同的观察视角,对它们进行可视化,往往也存在多种不同的解决方案,这里介绍的方法,并不是唯一正确的答案。关键在于,图表的设计者想要表达什么信息?是否让观众正确且快速地理解了想要表达的信息?
不同类型的图表,有着不同的优势和劣势。
斜率图的优势,是能快速看到每个类别前后发生的变化,并能根据线条的陡峭程度,直观地感受到变化的幅度。
斜率图的劣势,是看不出整体与部分的占比关系。另外,如果类别的顺序很重要,那么也不适合使用斜率图,因为类别会根据数值大小自动进行排列。
最后,留给你一道思考题:在你看到过的各种数据中,有哪些数据是适合用斜率图进行对比分析的?
当你不知道该选择什么类型的图表时,不妨停下来想一想,你希望让观众了解什么或者做什么?
以上就是python 绘制斜率图进行对比分析的详细内容,更多关于python 对比分析的资料请关注其它相关文章!
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
折线图是数据分析的一种手段,但是有时候我们也需要柱状图进行不同数据的可视化量化对比。使用pandas的DataFrame方法进行柱状图的绘制也是比较方便的。把之
iMindMap可以分屏操作思维导图,这个功能特别适合操作两个相关联的文件,可以对比分析,然后更新信息等,下面我们就来看看详细的教程。软件名称:imindmap
六:操作(1)每天23点到24点进行降价,这样0-23点数据对比分析,系统在这个时间点切换,进行更新,开车0点过后,要调整日限额。(2)每次降价不超过5%,一般
本文实例对比分析了php中随机函数mt_rand()与rand()性能问题。分享给大家供大家参考。具体分析如下:在php中mt_rand()和rand()函数都
可以在网上多查找一些相关的院校资料,进行对比分析后选择一家适合自己的进行学习,建议最好去专业的学校,老师会根据你的基础给你系统的指导。淘宝网店的宣传与推广内容虽