pytorch 实现打印模型的参数值

时间:2021-05-22

对于简单的网络

例如全连接层Linear

可以使用以下方法打印linear层:

fc = nn.Linear(3, 5)params = list(fc.named_parameters())print(params.__len__())print(params[0])print(params[1])

输出如下:

由于Linear默认是偏置bias的,所有参数列表的长度是2。第一个存的是全连接矩阵,第二个存的是偏置。

对于稍微复杂的网络

例如MLP

mlp = nn.Sequential( nn.Dropout(p=0.3), nn.Linear(1024, 256), nn.Linear(256, 64), nn.Linear(64, 16), nn.Linear(16, 1) )params = list(mlp.named_parameters())print(params.__len__())print(params[0])print(params[1])print(params[2])print(params[3])

输出:

可以发现,堆叠起来的网络,参数是依次放置的。先是全连接的权重,然后偏置。然后是下一层网络的权重+偏置。依次进行下去。

这里有4层fc,4*2=8.所以一共有8个参数矩阵。

以上这篇pytorch 实现打印模型的参数值就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章