时间:2021-05-22
伽马变换就是用来图像增强,其提升了暗部细节,简单来说就是通过非线性变换,让图像从暴光强度的线性响应变得更接近人眼感受的响应,即将漂白(相机曝光)或过暗(曝光不足)的图片,进行矫正。
伽马变换的基本形式如下:
大于1时,对图像的灰度分布直方图具有拉伸作用(使灰度向高灰度值延展),而小于1时,对图像的灰度分布直方图具有收缩作用(是使灰度向低灰度值方向靠拢)。
#分道计算每个通道的直方图img0 = cv2.imread('12.jpg')hist_b = cv2.calcHist([img0],[0],None,[256],[0,256])hist_g = cv2.calcHist([img0],[1],None,[256],[0,256])hist_r = cv2.calcHist([img0],[2],None,[256],[0,256])def gamma_trans(img,gamma): #具体做法先归一化到1,然后gamma作为指数值求出新的像素值再还原 gamma_table = [np.power(x/255.0,gamma)*255.0 for x in range(256)] gamma_table = np.round(np.array(gamma_table)).astype(np.uint8) #实现映射用的是Opencv的查表函数 return cv2.LUT(img0,gamma_table)img0_corrted = gamma_trans(img0, 0.5)cv2.imshow('img0',img0)cv2.imshow('gamma_image',img0_corrted)cv2.imwrite('gamma_image.png',img0_corrted)#分通道计算Gamma校正后的直方图hist_b_c =cv2.calcHist([img0_corrted],[0],None,[256],[0,256])hist_g_c =cv2.calcHist([img0_corrted],[1],None,[256],[0,256])hist_r_c =cv2.calcHist([img0_corrted],[2],None,[256],[0,256])fig = plt.figure('gamma')pix_hists = [[hist_b, hist_g, hist_r], [hist_b_c, hist_g_c, hist_r_c]]pix_vals = range(256)for sub_plt, pix_hist in zip([121, 122], pix_hists): ax = fig.add_subplot(sub_plt, projection='3d') for c, z, channel_hist in zip(['b', 'g', 'r'], [20, 10, 0], pix_hist): cs = [c] * 256 ax.bar(pix_vals, channel_hist, zs=z, zdir='y', color=cs, alpha=0.618, edgecolor='none', lw=0) ax.set_xlabel('Pixel Values') ax.set_xlim([0, 256]) ax.set_ylabel('Count') ax.set_zlabel('Channels')plt.show()cv2.waitKey()以上这篇浅谈Python Opencv中gamma变换的使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本文实例为大家分享了python+opencv实现霍夫变换检测直线的具体代码,供大家参考,具体内容如下python+opencv实现高斯平滑滤波python+o
利用Opencv中的Houghline方法进行直线检测—python语言这是给Python部落翻译的文章,请在这里看原文。在图像处理中,霍夫变换用来检测任意能够
明确一下,我们需要使用python来调用opencv中的库函数,所以需要安装opencv-python。主要需要安装:1.opencv-python2.nump
如下所示:运行环境:python3.6.4opencv3.4.0#-*-coding:utf-8-*-"""Note:使用Python和OpenCV检测图像中的
上一篇文章中,我们介绍了python实现图片处理和特征提取详解,这里我们再来看看Python通过OpenCV实现批量剪切图片,具体如下。做图像处理需要大批量的修