时间:2021-05-22
后端研发的同学对无限级分类肯定映像深刻,当初花了不少时间吧?
无限级分类树状结构的应用场景很多,例如后端研发需要把用户相关权限读取出来并生成树状结构,前端研发拿到权限树之后可以按照结构展示用户有权限访问的栏目;再例如网页上的栏目分级:
作者在初次接触树状结构生成需求的时候,也是挠头,后来找到了一个代码少且清晰易懂的生成算法:递归。
首先,确保数据库中存储的类别信息如下:
[ {"id": 1, "name": '电器', "parent": 0}, {"id": 2, "name": '水果', "parent": 0}, {"id": 3, "name": '家用电器', "parent": 1}, {"id": 4, "name": '电吹风', "parent": 3}, {"id": 5, "name": '电风扇', "parent": 3}, {"id": 6, "name": '台灯', "parent": 3}, {"id": 7, "name": '商用电器', "parent": 1}, {"id": 8, "name": '大型电热锅', "parent": 7},]字段 parent 记录的是此条目的父编号,例如电吹风的父编号是 3,即电吹风属于家用电器,而家用电器的父编号是 1,即家用电器属于电器类产品。电吹风条目跟电器条目并无直接的标识进行关联,但需要用树状结构来表明 电器 <- 家用电器 <- 电吹风 的关系。
通过 parent 寻找父编号,并建立关联关系的操作实际上是循环往复的,直到找完所有的结点,这跟递归算法非常契合,很轻松便能写出对应的递归代码:
def generate_tree(source, parent): tree = [] for item in source: if item["parent"] == parent: item["child"] = generate_tree(source, item["id"]) tree.append(item) return tree只需要将数据库中存储的信息传递给 generate_tree 函数即可。这段递归代码在往复循环的过程中通过 parent 来寻找子结点,找到子结点后将其添加到树中。完整代码如下:
import jsondef generate_tree(source, parent): tree = [] for item in source: if item["parent"] == parent: item["child"] = generate_tree(source, item["id"]) tree.append(item) return treeif __name__ == '__main__': permission_source = [ {"id": 1, "name": '电器', "parent": 0}, {"id": 2, "name": '水果', "parent": 0}, {"id": 3, "name": '家用电器', "parent": 1}, {"id": 4, "name": '电吹风', "parent": 2}, {"id": 5, "name": '电风扇', "parent": 3}, {"id": 6, "name": '台灯', "parent": 3}, {"id": 7, "name": '商用电器', "parent": 1}, {"id": 8, "name": '大型电热锅', "parent": 7}, ] permission_tree = generate_tree(permission_source, 0) print(json.dumps(permission_tree, ensure_ascii=False))你试试运行一下,看看结构是否符合预期。
递归算法中有很多重复的计算,这些计算不仅占用额外资源,还会降低函数执行效率,因此需要对递归进行优化。这里选用缓存优化法提升函数执行效率。
基本思路是每次找到结点关系后将此条目的编号添加到一个列表中缓存起来,代表此条目已找到结点关系。当往复循环执行函数时再次遇到此条目可以跳过。代码改动很简单,增加一个缓存列表和控制流语句即可:
def generate_tree(source, parent, cache=[]): tree = [] for item in source: if item["id"] in cache: continue if item["parent"] == parent: cache.append(item["id"]) item["child"] = generate_tree(source, item["id"], cache) tree.append(item) return tree至此,无限级分类树状结构生成算法完成。你学会了吗?
到此这篇关于Python 无限级分类树状结构生成算法的实现的文章就介绍到这了,更多相关Python 无限级分类树状结构内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
无限级分类,主要是通过储存上级分类的id以及分类路径来实现。由于数据的结构简单,所以要将分类的关系由树状显示,我只能想到用递归的方式给于实现。无限级分类,主要是
本文我给大家介绍如何使用CSS和HTML就可以将一个多级无序列表的节点展现成树状结构。树状结构我们在很多项目中要应用,如公司组织架构图、无限级分类等等。纯css
在一些复杂的系统中,要求对信息栏目进行无限级的分类,以增强系统的灵活性。那么PHP是如何实现无限级分类的呢?我们在本文中使用递归算法并结合mysql数据表实现无
无限级分类在开发中经常使用,例如:部门结构、文章分类。无限级分类的难点在于“输出”和“查询”,例如将文章分类输出为列表形式;查找分类A下面所有分类包含的文章。1
最近在研究发红包的功能,于是写了个红包的生成算法。红包生成算法的需求预先生成所有的红包还是一个请求随机生成一个红包简单来说,就是把一个大整数m分解(直接以“分为