时间:2021-05-22
获取数据集,并画图代码如下:
import numpy as npfrom sklearn.datasets import make_moonsimport matplotlib.pyplot as plt# 手动生成一个随机的平面点分布,并画出来np.random.seed(0)X, y = make_moons(200, noise=0.20)plt.scatter(X[:,0], X[:,1], s=40, c=y, cmap=plt.cm.Spectral)plt.show()得到图如下:
定义决策边界函数:
# 咱们先顶一个一个函数来画决策边界def plot_decision_boundary(pred_func): # 设定最大最小值,附加一点点边缘填充 x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 h = 0.01 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # 用预测函数预测一下 Z = pred_func(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # 然后画出图 plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Spectral)定义分类函数,并画出决策边界图代码如下:
from sklearn.linear_model import LogisticRegressionCV#咱们先来瞄一眼逻辑斯特回归对于它的分类效果clf = LogisticRegressionCV()clf.fit(X, y) # 画一下决策边界plot_decision_boundary(lambda x: clf.predict(x))plt.title("Logistic Regression")plt.show()画图如下:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本文实例讲述了Python机器学习算法库scikit-learn学习之决策树实现方法。分享给大家供大家参考,具体如下:决策树决策树(DTs)是一种用于分类和回归
在上一篇文章中,我们已经构建了决策树,接下来可以使用它用于实际的数据分类。在执行数据分类时,需要决策时以及标签向量。程序比较测试数据和决策树上的数值,递归执行直
决策树分类与上一篇博客k近邻分类的最大的区别就在于,k近邻是没有训练过程的,而决策树是通过对训练数据进行分析,从而构造决策树,通过决策树来对测试数据进行分类,同
Python小猫检测,通过调用opencv自带的猫脸检测的分类器进行检测。分类器有两个:haarcascade_frontalcatface.xml和haarc
详解python里使用正则表达式的全匹配功能python中很多匹配,比如搜索任意位置的search()函数,搜索边界的match()函数,现在还需要学习一个全匹