基于python爬取链家二手房信息代码示例

时间:2021-05-22

基本环境配置

  • python 3.6
  • pycharm
  • requests
  • parsel
  • time

相关模块pip安装即可

确定目标网页数据


哦豁,这个价格..................看到都觉得脑阔疼

通过开发者工具,可以直接找到网页返回的数据~



每一个二手房的数据,都在网页的 li 标签里面,咱们可以获取网页返回的数据,然后通过解析,就可以获取到自己想要的数据了~

获取网页数据

import requestsheaders = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36'}response = requests.get(url=url, headers=headers)

解析网页数据

import parselselector = parsel.Selector(response.text)lis = selector.css('.sellListContent li')dit = {}for li in lis: title = li.css('.title a::text').get() dit['标题'] = title positionInfo = li.css('.positionInfo a::text').getall() info = '-'.join(positionInfo) dit['开发商'] = info houseInfo = li.css('.houseInfo::text').get() dit['房子信息'] = houseInfo followInfo = li.css('.followInfo::text').get() dit['发布周期'] = followInfo Price = li.css('.totalPrice span::text').get() dit['售价/万'] = Price unitPrice = li.css('.unitPrice span::text').get() dit['单价'] = unitPrice csv_writer.writerow(dit) print(dit)

保存数据

import csvf = open('二手房信息.csv', mode='a', encoding='utf-8-sig', newline='')csv_writer = csv.DictWriter(f, fieldnames=['标题', '开发商', '房子信息', '发布周期', '售价/万', '单价'])csv_writer.writeheader()csv_writer.writerow(dit)f.close()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章