时间:2021-05-22
本文为大家分享了Python遗传算法解决最大流问题,供大家参考,具体内容如下
Generate_matrix
Max_road
Draw_road
实际运行的例子
In [119]: A = Generate_matrix(4,6)In [120]: AOut[120]: array([[ 10., 1., 7., 10., 8., 8.], [ 4., 8., 8., 4., 8., 2.], [ 9., 8., 8., 3., 9., 8.], [ 7., 2., 5., 9., 3., 8.]])In [121]: road , M=Max_road(A,0.1,2)In [122]: Draw_road(road,A)较大规模的情况
In [105]: A = Generate_matrix(40,60)In [106]: road , M=Max_road(A,0.1,4)In [107]: roadOut[107]: array([ 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 1., 0., 0., 1., 0., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0., 1., 0., 0., 0., 1., 0., 1., 0., 0., 1., 0., 0., 1., 0., 0., 0., 1., 0., 0., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 1., 0., 1., 1., 1., 1., 0., 1., 0., 1., 1., 1., 0., 1., 0., 1., 0., 1., 0., 1., 0., 0., 1., 0., 1., 0., 0., 1., 0., 1.])In [108]: Draw_road(road,A)In [109]: A = generate_Matrix(100,200)In [110]: road , M=Max_road(A,0.1,10)In [111]: draw_road(road,A)以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
今天整理之前写的代码,发现在做数模期间写的用python实现的遗传算法,感觉还是挺有意思的,就拿出来分享一下。首先遗传算法是一种优化算法,通过模拟基因的优胜劣汰
本文实例讲述了C++实现简单遗传算法。分享给大家供大家参考。具体实现方法如下://遗传算法GA#include#include#includeusingname
遗传算法的基本原理是:遗传算法是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法,其主要特点是直接对结构对象进行操作,不存在求导和
1.引言因为在学习遗传算法路径规划的内容,其中遗传算法中涉及到了种群的初始化,而在路径规划的种群初始化中,种群初始化就是先找到一条条从起点到终点的路径,也因此需
写在前面之前的文章中已经讲过了遗传算法的基本流程,并且用MATLAB实现过一遍了。这一篇文章主要面对的人群是看过了我之前的文章,因此我就不再赘述遗传算法是什么以