时间:2021-05-22
本文主要给大家讲解了Apriori算法的基础知识以及Apriori算法python中的实现过程,以下是所有内容:
1. Apriori算法简介
Apriori算法是挖掘布尔关联规则频繁项集的算法。Apriori算法利用频繁项集性质的先验知识,通过逐层搜索的迭代方法,即将K-项集用于探察(k+1)项集,来穷尽数据集中的所有频繁项集。先找到频繁项集1-项集集合L1, 然后用L1找到频繁2-项集集合L2,接着用L2找L3,知道找不到频繁K-项集,找到每个Lk需要一次数据库扫描。注意:频繁项集的所有非空子集也必须是频繁的。Apriori性质通过减少搜索空间,来提高频繁项集逐层产生的效率。Apriori算法由连接和剪枝两个步骤组成。
2. Apriori算法步骤
根据一个实例来解释:下图是一个交易单,I1至I5可看作5种商品。下面通过频繁项集合来找出关联规则。
假设我们的最小支持度阈值为2,即支持度计数小于2的都要删除。
上表第一行(第一项交易)表示:I1和I2和I5一起被购买。
C1至L1的过程: 只需查看支持度是否高于阈值,然后取舍。上图C1中所有阈值都大于2,故L1中都保留。
L1至C2的过程分三步:
遍历产生L1中所有可能性组合,即(I1,I2)...(I4,I5 ) 对便利产生的每个组合进行拆分,以保证频繁项集的所有非空子集也必须是频繁的。即对于(I1,I2)来说进行拆分为I1,I2.由于I1和I2在L1中都为频繁项,所以这一组合保留。对于剩下的C2根据原数据集中进行支持度计数
C2至L2的过程: 只需查看支持度是否高于阈值,然后取舍。
L2至C3的过程:
还是上面的步骤。首先生成(1,2,3)、(1,2,4)、(1,2,5)....为什么最后只剩(1,2,3)和(1,2,5)呢?因为剪枝过程:(1,2,4)拆分为(1,2)和(1,4)和(2,4).然而(1,4)在L2中不存在,即非频繁项。所有剪枝删除。然后对C3中剩下的组合进行计数。发现(1,2,3)和(1,2,5)的支持度2。迭代结束。
所以算法过程就是 Ck- Lk- Ck+1 的过程:
3.Apriori算法实现
# -*- coding: utf-8 -*-"""Created on Sat Dec 9 15:33:45 2017@author: LPS"""import numpy as npfrom itertools import combinations # 迭代工具data = [[1,2,5], [2,4], [2,3], [1,2,4], [1,3], [2,3], [1,3], [1,2,3,5], [1,2,3]]minsp = 2d = []for i in range(len(data)): d.extend(data[i])new_d = list(set(d))def satisfy(s, s_new, k): # 更新确实存在的L e =[] ss_new =[] for i in range(len(s_new)): for j in combinations(s_new[i], k): # 迭代产生所有元素可能性组合 e.append(list(j)) if ([l for l in e if l not in s]) ==[] : ss_new.append(s_new[i]) e = [] return ss_new # 筛选满足条件的结果 def count(s_new): # 返回narray格式的C num = 0 C = np.copy(s_new) C = np.column_stack((C, np.zeros(C.shape[0]))) for i in range(len(s_new)): for j in range(len(data)): if ([l for l in s_new[i] if l not in data[j]]) ==[] : num = num+1 C[i,-1] = num num = 0 return Cdef limit(L): # 删掉不满足阈值的C row = [] for i in range(L.shape[0]): if L[i,-1] < minsp : row.append(i) L = np.delete(L, row, 0) return Ldef generate(L, k): # 实现由L至C的转换 s = [] for i in range(L.shape[0]): s.append(list(L[i,:-1])) s_new = []# L = L.delete(L, -1, 1)# l = L.shape[1] for i in range(L.shape[0]-1): for j in range(i+1, L.shape[0]): if (L[j,-2]>L[i,-2]): t = list(np.copy(s[i])) t.append(L[j,-2]) s_new.append(t) # s_new为列表 s_new = satisfy(s, s_new, k) C = count(s_new) return C# 初始的C与LC = np.zeros([len(new_d), 2])for i in range(len(new_d)): C[i:] = np.array([new_d[i], d.count(new_d[i])])L = np.copy(C)L = limit(L)# 开始迭代k = 1while (np.max(L[:,-1]) > minsp): C = generate(L, k) # 由L产生C L = limit(C) # 由C产生L k = k+1# 对最终结果去重复print((list(set([tuple(t) for t in L])))# 结果为 [(1.0, 2.0, 3.0, 2.0), (1.0, 2.0, 5.0, 2.0)]声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
首先导入包含apriori算法的mlxtend库,pipinstallmlxtend调用apriori进行关联规则分析,具体代码如下,其中数据集选取本博客“机器
主要讲解Python调用OpenCV实现图像平滑,包括四个算法:均值滤波、方框滤波、高斯滤波和中值滤波.给图像增加噪声:importcv2importnumpy
导读:随着大数据概念的火热,啤酒与尿布的故事广为人知。我们如何发现买啤酒的人往往也会买尿布这一规律?数据挖掘中的用于挖掘频繁项集和关联规则的Apriori算法可
Python3实现旋转数组的3种算法下面是Python3实现的旋转数组的3种算法。一、题目给定一个数组,将数组中的元素向右移动k个位置,其中k是非负数。例如:输
我简单的绘制了一下排序算法的分类,蓝色字体的排序算法是我们用python3实现的,也是比较常用的排序算法。Python3常用排序算法1、Python3冒泡排序—