时间:2021-05-22
产生此次实验的原因:当我使用pytorch进行神经网络的训练时,需要每次向CNN传入一组图像,并且这些图片的存放位置是在两个文件夹中:
A文件夹:图片1a,图片2a,图片3a……图片1000a
B文件夹:图片1b, 图片2b,图片3b……图片1000b
所以在每个循环里,我都希望能从A中取出图片Na,同时从B文件夹中取出对应的图片Nb。
测试一:通过pytorch官方文档中的dataloader搭配python中的迭代器iterator
dataset = dset.ImageFolder( root='./folder1', transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5)), # bring images to (-1,1) ]) ) dataloader1 = torch.utils.data.DataLoader(dataset, batch_size=opt.batchSize, shuffle=True, num_workers=opt.workers) iterator1 = iter(dataloader1)for i in range(1,1001):data = iterator1.next() data2 = iterator2.next()将两个dataloader当作数据集,然后分别调用迭代器iter(),然后在每次调用的时候使用next()来得到数据。
测试一下:将每次读入的图像输出,不对!发现图像并不是按照图像1,图像2,图像3......这样顺序读取的,而是很奇怪的顺序。所以为了要顺序读取数据,我们需要使用别的方法。
测试一的实验结果:此路不通!
from PIL import ImagepathDir = os.listdir('./folder') #获取文件夹内所有文件的名称,生成数组 pathDir.sort() #对所有文件名进行排序 for allDir in pathDir: child = os.path.join('%s/%s' % ('./folder', allDir))#合成文件名 fopen = Image.open(child).convert('RGB') #通过PIL读取文件 transform_list = [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] transform = transforms.Compose(transform_list)#将PIL格式的文件转换成 tensor image = transform(fopen) #转换测试二:首先得到文件夹下的所有文件名,将文件名数组做sort()排序,然后每次通过文件名读取图像。
输出每次读入的图片,发现每次排序不正确,它的排序方法是图片1,图片10,图片100……
与我们的期望不一样,所以这种方法也不对(可以重写sort函数来进行自定义的排序,这里不做深入探究)
测试二的实验结果:此路或许可通!
测试三:通过自己构造每次访问的文件名来访问
for i in range(1,1001): drain = irain.next() dnorain = iground.next() drain = os.path.join('%s/图像%s' % ('./rainy_img', i)) #跟上面一样,不过因为已经知道文件的取名顺序,所以拼出需要访问的文件名 fopen = Image.open(drain).convert('RGB') drain = transform(fopen) print(drain)测试三的实验结果:此路畅通无阻!
以上这篇使用pytorch进行图像的顺序读取方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
pytorch读取图像数据转成opencv格式方法:先转成numpy通用的格式,再将其转换成opencv格式。pytorch读取的数据使用loaddata这类函
PIL:使用python自带图像处理库读取出来的图片格式numpy:使用python-opencv库读取出来的图片格式tensor:pytorch中训练时所采取
前言在pytorch中经常会遇到图像格式的转化,例如将PIL库读取出来的图片转化为Tensor,亦或者将Tensor转化为numpy格式的图片。而且使用不同图像
java中BufferedImage判断图像通道顺序并转RGB/BGR一般来说JavaImageIO处理读取图像时,一般是RGB或ARGB格式,但是有的时候,我
在使用pytorch训练模型,经常需要加载大量图片数据,因此pytorch提供了好用的数据加载工具Dataloader。为了实现小批量循环读取大型数据集,在Da