浅谈tensorflow1.0 池化层(pooling)和全连接层(dense)

时间:2021-05-22

池化层定义在tensorflow/python/layers/pooling.py.

有最大值池化和均值池化。

1、tf.layers.max_pooling2d

max_pooling2d( inputs, pool_size, strides, padding='valid', data_format='channels_last', name=None)
  • inputs: 进行池化的数据。
  • pool_size: 池化的核大小(pool_height, pool_width),如[3,3]. 如果长宽相等,也可以直接设置为一个数,如pool_size=3.
  • strides: 池化的滑动步长。可以设置为[1,1]这样的两个整数. 也可以直接设置为一个数,如strides=2
  • padding: 边缘填充,'same' 和'valid‘选其一。默认为valid
  • data_format: 输入数据格式,默认为channels_last ,即 (batch, height, width, channels),也可以设置为channels_first 对应 (batch, channels, height, width).
  • name: 层的名字。
  • 例:

    pool1=tf.layers.max_pooling2d(inputs=x, pool_size=[2, 2], strides=2)

    一般是放在卷积层之后,如:

    conv=tf.layers.conv2d( inputs=x, filters=32, kernel_size=[5, 5], padding="same", activation=tf.nn.relu)pool=tf.layers.max_pooling2d(inputs=conv, pool_size=[2, 2], strides=2)

    2.tf.layers.average_pooling2d

    average_pooling2d( inputs, pool_size, strides, padding='valid', data_format='channels_last', name=None)

    参数和前面的最大值池化一样。

    全连接dense层定义在 tensorflow/python/layers/core.py.

    3、tf.layers.dense

    dense( inputs, units, activation=None, use_bias=True, kernel_initializer=None, bias_initializer=tf.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, trainable=True, name=None, reuse=None)
  • inputs: 输入数据,2维tensor.
  • units: 该层的神经单元结点数。
  • activation: 激活函数.
  • use_bias: Boolean型,是否使用偏置项.
  • kernel_initializer: 卷积核的初始化器.
  • bias_initializer: 偏置项的初始化器,默认初始化为0.
  • kernel_regularizer: 卷积核化的正则化,可选.
  • bias_regularizer: 偏置项的正则化,可选.
  • activity_regularizer: 输出的正则化函数.
  • trainable: Boolean型,表明该层的参数是否参与训练。如果为真则变量加入到图集合中 GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
  • name: 层的名字.
  • reuse: Boolean型, 是否重复使用参数.
  • 全连接层执行操作 outputs = activation(inputs.kernel + bias)

    如果执行结果不想进行激活操作,则设置activation=None。

    例:

    #全连接层dense1 = tf.layers.dense(inputs=pool3, units=1024, activation=tf.nn.relu)dense2= tf.layers.dense(inputs=dense1, units=512, activation=tf.nn.relu)logits= tf.layers.dense(inputs=dense2, units=10, activation=None)

    也可以对全连接层的参数进行正则化约束:

    复制代码 代码如下:dense1 = tf.layers.dense(inputs=pool3, units=1024, activation=tf.nn.relu,kernel_regularizer=tf.contrib.layers.l2_regularizer(0.003))

    以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

    声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

    相关文章