时间:2021-05-22
池化层定义在tensorflow/python/layers/pooling.py.
有最大值池化和均值池化。
1、tf.layers.max_pooling2d
max_pooling2d( inputs, pool_size, strides, padding='valid', data_format='channels_last', name=None)例:
pool1=tf.layers.max_pooling2d(inputs=x, pool_size=[2, 2], strides=2)一般是放在卷积层之后,如:
conv=tf.layers.conv2d( inputs=x, filters=32, kernel_size=[5, 5], padding="same", activation=tf.nn.relu)pool=tf.layers.max_pooling2d(inputs=conv, pool_size=[2, 2], strides=2)2.tf.layers.average_pooling2d
average_pooling2d( inputs, pool_size, strides, padding='valid', data_format='channels_last', name=None)参数和前面的最大值池化一样。
全连接dense层定义在 tensorflow/python/layers/core.py.
3、tf.layers.dense
dense( inputs, units, activation=None, use_bias=True, kernel_initializer=None, bias_initializer=tf.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, trainable=True, name=None, reuse=None)全连接层执行操作 outputs = activation(inputs.kernel + bias)
如果执行结果不想进行激活操作,则设置activation=None。
例:
#全连接层dense1 = tf.layers.dense(inputs=pool3, units=1024, activation=tf.nn.relu)dense2= tf.layers.dense(inputs=dense1, units=512, activation=tf.nn.relu)logits= tf.layers.dense(inputs=dense2, units=10, activation=None)也可以对全连接层的参数进行正则化约束:
复制代码 代码如下:dense1 = tf.layers.dense(inputs=pool3, units=1024, activation=tf.nn.relu,kernel_regularizer=tf.contrib.layers.l2_regularizer(0.003))
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
刚开始学习tensorflow,还不太会用,开个博记录,今天遇到一个问题是用tf.layers.dense创建的全连接层,如何查看权重?知道kernel表示了权
利用pytorch来构建网络模型有很多种方法,以下简单列出其中的四种。假设构建一个网络模型如下:卷积层--》Relu层--》池化层--》全连接层--》Relu层
从某种意义讲,tensorflow这个项目已经失败了,要不了几年以后,江湖上再无tensorflow因为tensorflow2.0和tensorflow1.0从
全连接层的作用如下: 1、首先全连接层(fullyconnectedlayers,FC)在整个卷积神经网络中起到“分类器”的作用。 2、其次目前由于全连接层
简介自适应池化AdaptivePooling是PyTorch含有的一种池化层,在PyTorch的中有六种形式:自适应最大池化AdaptiveMaxPooling