时间:2021-05-22
大家在学习python中,经常会使用到K-Means和图片压缩的,我们在此给大家分享一下K-Means和图片压缩的方法和原理,喜欢的朋友收藏一下吧。
通俗的介绍这种压缩方式,就是将原来很多的颜色用少量的颜色去表示,这样就可以减小图片大小了。下面首先我先介绍下K-Means,当你了解了K-Means那么你也很容易的可以去理解图片压缩了,最后附上图片压缩的核心代码。
K-Means的核心思想
k-means的核心算法也就上面寥寥几句,下面将分三个部分来讲解:初始化簇中心、簇分配、簇中心移动。
初始化簇中心
随机取簇中心若是不幸,会出现局部最优的情况;想要打破这种情况,需要多次取值计算来解决这种情况。
代价函数
代码实现
J = zeros(100,1);M = size(X,1);min = inf;for i = 1:100%随机取k个样本点作为簇中心randidx = randperm(M);initial_centroids = X(randidx(1:K),:);%将所得的中心点进行训练[centroids0, idx] = runkMeans(X, initial_centroids,10);for k = 1:M J(i) = J(i) + sum((X(k,:) - centroids0(idx(M),:)).^2); end%取最小代价为样本中心点if(min > J(i))centroids =centroids0;endend簇分配
将样本点分配到离它最近的簇中心下
tmp = zeros(K,1);for i = 1:size(X,1)for j = 1:Ktmp(j) = sum((X(i,:) - centroids(j,:)).^2);end[mins,index]=min(tmp);idx(i) = index;end簇中心移动
取当前簇中心下所有样本点的均值为下一个簇中心
for i = 1:mcentroids(idx(i),:) = centroids(idx(i),:) + X(i,:);endfor j = 1:Kcentroids(j,:) = centroids(j,:)/sum(idx == j);end图片压缩
% 加载图片A = double(imread('dragonfly.jpg'));% 特征缩减A = A / 255; img_size = size(A);X = reshape(A, img_size(1) * img_size(2), 3);K = 16; max_iters = 10;%开始训练模型initial_centroids = kMeansInitCentroids(X, K);[centroids, idx] = runkMeans(X, initial_centroids, max_iters);%开始压缩图片idx = findClosestCentroids(X, centroids);X_recovered = centroids(idx,:);X_recovered = reshape(X_recovered, img_size(1), img_size(2), 3);%输出所压缩的图片subplot(1, 2, 2);imagesc(X_recovered)声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
k-means算法思想较简单,说的通俗易懂点就是物以类聚,花了一点时间在python中实现k-means算法,k-means算法有本身的缺点,比如说k初始位置的
K-means算法简介K-means是机器学习中一个比较常用的算法,属于无监督学习算法,其常被用于数据的聚类,只需为它指定簇的数量即可自动将数据聚合到多类中,相
K-Means算法是一种基于距离的聚类算法,采用迭代的方法,计算出K个聚类中心,把若干个点聚成K类。MLlib实现K-Means算法的原理是,运行多个K-Mea
本文实例为大家分享了Python实现k-means算法的具体代码,供大家参考,具体内容如下这也是周志华《机器学习》的习题9.4。数据集是西瓜数据集4.0,如下编
k-means聚类算法k-means是发现给定数据集的k个簇的算法,也就是将数据集聚合为k类的算法。算法过程如下:1)从N个文档随机选取K个文档作为质心2)对剩