时间:2021-05-22
代码已经调通,跑出来的效果如下:
# coding=gbkimport torchimport matplotlib.pyplot as pltfrom torch.autograd import Variableimport torch.nn.functional as F ''' Pytorch是一个拥有强力GPU加速的张量和动态构建网络的库,其主要构建是张量,所以可以把PyTorch当做Numpy 来用,Pytorch的很多操作好比Numpy都是类似的,但是其能够在GPU上运行,所以有着比Numpy快很多倍的速度。 训练完了,发现隐层越大,拟合的速度越是快,拟合的效果越是好''' def train(): print('------ 构建数据集 ------') # torch.linspace是为了生成连续间断的数据,第一个参数表示起点,第二个参数表示终点,第三个参数表示将这个区间分成平均几份,即生成几个数据 x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) #torch.rand返回的是[0,1]之间的均匀分布 这里是使用一个计算式子来构造出一个关联结果,当然后期要学的也就是这个式子 y = x.pow(2) + 0.2 * torch.rand(x.size()) # Variable是将tensor封装了下,用于自动求导使用 x, y = Variable(x), Variable(y) #绘图展示 plt.scatter(x.data.numpy(), y.data.numpy()) #plt.show() print('------ 搭建网络 ------') #使用固定的方式继承并重写 init和forword两个类 class Net(torch.nn.Module): def __init__(self,n_feature,n_hidden,n_output): #初始网络的内部结构 super(Net,self).__init__() self.hidden=torch.nn.Linear(n_feature,n_hidden) self.predict=torch.nn.Linear(n_hidden,n_output) def forward(self, x): #一次正向行走过程 x=F.relu(self.hidden(x)) x=self.predict(x) return x net=Net(n_feature=1,n_hidden=1000,n_output=1) print('网络结构为:',net) print('------ 启动训练 ------') loss_func=F.mse_loss optimizer=torch.optim.SGD(net.parameters(),lr=0.001) #使用数据 进行正向训练,并对Variable变量进行反向梯度传播 启动100次训练 for t in range(10000): #使用全量数据 进行正向行走 prediction=net(x) loss=loss_func(prediction,y) optimizer.zero_grad() #清除上一梯度 loss.backward() #反向传播计算梯度 optimizer.step() #应用梯度 #间隔一段,对训练过程进行可视化展示 if t%5==0: plt.cla() plt.scatter(x.data.numpy(),y.data.numpy()) #绘制真是曲线 plt.plot(x.data.numpy(),prediction.data.numpy(),'r-',lw=5) plt.text(0.5,0,'Loss='+str(loss.data[0]),fontdict={'size':20,'color':'red'}) plt.pause(0.1) plt.ioff() plt.show() print('------ 预测和可视化 ------') if __name__=='__main__': train()以上这篇pytorch-神经网络拟合曲线实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本文用于利用Pytorch实现神经网络的分类!!!1.训练神经网络分类模型importtorchfromtorch.autogradimportVariable
本文实例为大家分享了Tensorflow实现神经网络拟合线性回归的具体代码,供大家参考,具体内容如下一、利用简单的一层神经网络拟合一个函数y=x^2,其中加入部
本文为大家讲解了pytorch实现CNN卷积神经网络,供大家参考,具体内容如下我对卷积神经网络的一些认识卷积神经网络是时下最为流行的一种深度学习网络,由于其具有
使用Pytorch来编写神经网络具有很多优势,比起Tensorflow,我认为Pytorch更加简单,结构更加清晰。希望通过实战几个Pytorch的例子,让大家
1Pytorch以ONNX方式保存模型defsaveONNX(model,filepath):'''保存ONNX模型:parammodel:神经网络模型:par