时间:2021-05-22
当我们开始精通编程语言时,我们不仅希望实现最终目标,而且希望使我们的程序高效。
在这个教程中,我们将学习一些Ipython的命令,这些命令可以帮助我们对Python代码进行时间分析。
注意,在本教程中,我建议使用Anaconda。
1.分析一行代码
要检查一行python代码的执行时间,请使用 %timeit 。下面是一个简单的例子来了解它的工作原理:
#### magics命令%timeit的简单用法%timeit [num for num in range(20)]#### 输出1.08 µs ± 43 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)主要注意事项:
使用命令选项-r和-n,分别表示执行次数和循环次数,我们将时间配置文件操作定制为执行5次和循环100次。
2.分析多行代码
本节向前迈进了一步,并解释了如何分析完整的代码块。通过对%timeit magic命令进行一个小的修改,将单百分比(%)替换为双百分比(%%),就可以分析一个完整的代码块。以下为示例演示,供参考:
#### 使用timeblock%%代码分析%%timeit -r5 -n1000for i in range(10): n = i**2 m = i**3 o = abs(i) #### 输出10.5 µs ± 226 ns per loop (mean ± std. dev. of 5 runs, 1000 loops each)可以观察到for循环的平均执行时间为10.5微秒。请注意,命令选项-r和-n分别用于控制执行次数和循环次数。
3.代码块中的每一行代码进行时间分析
到目前为止,我们只在分析一行代码或代码块时查看摘要统计信息。如果我们想评估代码块中每一行代码的性能呢?使用 Line_profiler 。
Line_profiler包可用于对任何函数执行逐行分析。要使用line_profiler软件包,请执行以下步骤:
安装— Line_profiler 包可以通过简单的调用pip或conda Install来安装。如果使用的是针对Python的anaconda发行版,建议使用conda安装
#### 安装line_profiler软件包conda install line_profiler加载扩展—一旦安装,你可以使用IPython来加载line_profiler:
#### 加载line_profiler的Ipython扩展%load_ext line_profiler时间分析函数—加载后,使用以下语法对任何预定义函数进行时间分析
%lprun -f function_name_only function_call_with_arguments语法细节:
在本练习中,我们将定义一个接受高度(以米为单位)和重量(以磅为单位)列表的函数,并将其分别转换为厘米和千克。
#### 定义函数def conversion(ht_mtrs, wt_lbs ): ht_cms = [ht*100 for ht in ht_mtrs] wt_kgs = [wt*.4535 for wt in wt_lbs] #### 定义高度和重量列表:ht = [5,5,4,7,6]wt = [108, 120, 110, 98]#### 使用line_profiler分析函数%lprun -f conversion conversion(ht,wt)---------------------------------------------------------------#### 输出Total time: 1.46e-05 sFile: <ipython-input-13-41e195af43a9>Function: conversion at line 2Line # Hits Time Per Hit % Time Line Contents============================================================== 2 1 105.0 105.0 71.9 ht_cms = [ht*100 for ht in ht_mtrs] 3 1 41.0 41.0 28.1 wt_kgs = [wt*.4535 for wt in wt_lbs]输出详细信息:
以14.6微秒为单位(参考第一行输出)
生成的表有6列:
你可以清楚地注意到,高度从米到厘米的转换几乎占了总时间的72%。
结束语
利用每一行代码的执行时间,我们可以部署策略来提高代码的效率。在接下来的3个教程中,我们将分享一些最佳实践来帮助你提高代码的效率。
我希望这篇教程能提供帮助,你能学到一些新东西。
以上就是python一些性能分析的技巧的详细内容,更多关于python 性能分析的资料请关注其它相关文章!
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
今天用python实现了一下简单的聚类分析,顺便熟悉了numpy数组操作和绘图的一些技巧,在这里做个记录。frompylabimport*fromsklearn
在python数据分析中,有时需要根据多列数据生成中间结果,pandas给我们带来了很多方便,通常简短的代码可以实现一些高级功能,灵活掌握一些技巧可以事倍功半p
掌握一些技巧,可尽量提高Python程序性能,也可以避免不必要的资源浪费。1、使用局部变量尽量使用局部变量代替全局变量:便于维护,提高性能并节省内存。使用局部变
在此记录自己学习python数据分析过程中学到的一些数据处理的小技巧。1.数据的读取#导入numpy库和pandas库importnumpyasnpimport
本文实例讲述了php导入大量数据到mysql性能优化技巧。分享给大家供大家参考。具体分析如下:在mysql中我们结合php把一些文件导入到mysql中,这里就来