时间:2021-05-22
堆是一棵完全二叉树。堆分为大根堆和小根堆,大根堆是父节点大于左右子节点,并且左右子树也满足该性质的完全二叉树。小根堆相反。可以利用堆来实现优先队列。
由于是完全二叉树,所以可以使用数组来表示堆,索引从0开始[0:length-1]。结点i的左右子节点分别为2i+1,2i+2。长度为length的树的最后一个非叶子节点为length//2-1。当前节点i的父节点为(i-1)//2。其中//表示向下取整。
以大根堆举例。当每次插入或者删除的时候,为了保证堆的结构特征不被破坏,需要进行调整。调整分为两种,一种是从上往下,将小的数下沉。一种是从下往上,令大的数上浮。
具体实现如下:
首先编写几个魔术方法。包括构造函数,可以直接调用len来返回data数组长度的函数,一个打印data内容的函数
def __init__(self, data=[]): self.data = data self.construct_heap() def __len__(self): return len(self.data) def __str__(self): return str(self.data)定义一个swap函数,来方便的交换数组中两个索引处的值。
def swap(self, i, j): self.data[i], self.data[j] = self.data[j], self.data[i]定义float_up方法,使堆中大的数能浮上来。当前节点不为根节点,并且当前节点数据大小大于父节点时,上浮。
def float_up(self, i): while i > 0 and self.data[i] > self.data[(i - 1) // 2]: self.swap(i, (i - 1) // 2) i = (i - 1) // 2定义sink_down方法,使堆中小的数沉下去。当前节点不为叶子节点时,如果小于左孩子或右孩子的数据,则和左右孩子中较大的换一下位置。
def sink_down(self, i): while i < len(self) // 2: l, r = 2 * i + 1, 2 * i + 2 if r < len(self) and self.data[l] < self.data[r]: l = r if self.data[i] < self.data[l]: self.swap(i, l) i = l实现append方法,能够动态地添加数据。在数据数组尾部添加数据,然后将数据上浮。
def append(self, data): self.data.append(data) self.float_up(len(self) - 1)实现pop_left方法,取堆中最大元素,即优先队列中第一个元素。将数组中第一个元素与最后一个元素换位置,删除最后一个元素,然后将第一个元素下沉到合适的位置。
def pop_left(self): self.swap(0, len(self) - 1) r = self.data.pop() self.sink_down(0) return r如果想在初始化堆的时候,向构造函数中传入数据参数,则需要一次性将整个堆构建完毕,而不能一个一个加入。实现也很简单,从最后一个非叶节点开始,逐个执行sink_down操作。
def construct_heap(self): for i in range(len(self) // 2 - 1, -1, -1): self.sink_down(i)这样一个基本的堆的代码就编写完毕了。
但是如果我们想要动态的改变数据,当前的堆就不能满足我们的需求了,因为索引不能总是标识同一个数据,因为堆的结构是不断调整的。我们需要使用索引堆。
在索引堆中,我们不在堆中直接保存数据,而是用在堆中存放数据的索引。
如果我们输入的数据arr是 45 20 12 5 35。则arr[0]一直指向45,arr[1]一直指向20,因为我们在调整堆结构中实际调整的是索引数组,而不会改变真实存放数据的数组。
因此我们的代码需要调整,首先在构造函数中加入一个索引数组。下标从0开始,与存放数据的数组的下标相对应。
def __init__(self, data=[]): self.data = data self.index_arr = list(range(len(self.data))) self.construct_heap()然后将返回堆长度的魔术函数也修改一下。
def __len__(self): return len(self.index_arr)调整一下之前定义的swap方法,原来是直接交换数据,现在交换索引。
def swap(self, i, j): self.index_arr[i], self.index_arr[j] = self.index_arr[j], self.index_arr[i]调整float_up以及sink_down中的相应位置
def float_up(self, i): while i > 0 and self.data[self.index_arr[i]] > self.data[self.index_arr[(i - 1) // 2]]: self.swap(i, (i - 1) // 2) i = (i - 1) // 2 def sink_down(self, i): while i < len(self) // 2: l, r = 2 * i + 1, 2 * i + 2 if r < len(self) and self.data[self.index_arr[l]] < self.data[self.index_arr[r]]: l = r if self.data[self.index_arr[i]] < self.data[self.index_arr[l]]: self.swap(i, l) i = l当append数据的时候,要相应的更新index_arr
def append(self, data): self.data.append(data) self.index_arr.append(len(self)) self.float_up(len(self) - 1)当移出数据的时候,之前已经提到过存放数据的数组,是按照append的顺序进行存储的,平时操作只是对index_arr的顺序进行调整。
如果data_arr为 42 30 74 60 相应的index_arr应该为2 3 0 1
这时,当我们popleft出最大元素时,data_arr中的74被移出后变成了42 30 60,数组中最大索引由3变成了2,如果索引数组中仍然用3这个索引来索引30会造成index溢出。74的索引为2,需要我们将索引数在2之后的都减1。
综上,在删除元素时,我们原先是将data_arr中的首尾元素互换,再删除尾部元素,再对头部元素进行sink_down操作。现在我们先换索引数组中首尾元素,再删除索引数组尾部元素,此时尚未操作存放data的data_arr,因此索引数组剩余元素与data_arr的元素仍是一一对应的。进行sink_down操作,操作完成之后再删除data_arr相应位置元素。最后将index_arr中值大于原index_arr头部元素值的减一。
def pop_left(self): self.swap(0, len(self) - 1) r = self.index_arr.pop() self.sink_down(0) self.data.pop(r) for i, index in enumerate(self.index_arr): if index > r: self.index_arr[i] -= 1 return r索引堆增加了一个更新操作,可以随时更新索引堆中的数据。更新时,先直接更新data_arr中相应索引处的数据,然后在index_arr中,找到存放了data_arr中,刚被更新的数据的索引的索引位置,与删除时一样需要进行一次遍历。找到这个位置之后,由于无法确定与前后元素的大小关系,因此需要进行一次float_up操作再进行一次sink_down操作。
def update(self, i, data): self.data[i] = data for index_index, index in enumerate(self.index_arr): if index == i: target = index_index self.float_up(target) self.sink_down(target)可以很明显看出,这个索引堆在插入元素时是比较快的,但是在删除元素和更新元素时,为了查找相应位置索引,都进行了一次遍历,这是很耗时的操作。为了能更快的找到index_arr中值为要更新的data_arr的相应索引值得索引位置,我们再次开辟一个新的数组to_index,来对index_arr进行索引。
例如对于数组75 54 65 90
此时它的index_arr为3 0 2 1。当要更新data[3],即90这个元素时,现在要遍历一遍index_arr来找到3这个位置,这个位置是0。我们要建立一个to_index,to_index[3]中存放的元素为0。
index_arr存放的元素分别为: 1 3 2 0。
先改变swap数组,在交换index_arr中元素时,也交换存放在to_index中的index_arr的索引。
def swap(self, i, j): self.index_arr[i], self.index_arr[j] = self.index_arr[j], self.index_arr[i] self.to_index[self.index_arr[i]], self.to_index[self.index_arr[j]] = self.to_index[self.index_arr[j]], \ self.to_index[self.index_arr[i]]然后在update中,当要更新位置为i的元素时,我们就不需要通过一次遍历才能找到index_arr中该元素的索引,而是直接通过访问index_arr[i]即可访问index_arr中相应索引
def update(self, i, data): self.data[i] = data target = self.to_index[i] self.float_up(target) self.sink_down(target)最后改变pop_left中相应代码,这时我们需要维护三个数组,data_arr,index_arr以及to_index。
仍然是首先将index_arr首位元素交换,并pop出尾部元素存放到i中。然后将头部元素sink_down到相应位置,然后将pop出data_arr索引i处的元素。然后pop出to_index中索引为i的元素,再将index_arr中索引溢出的元素进行调整。
def pop_left(self): self.swap(0, len(self) - 1) r = self.index_arr.pop() self.sink_down(0) self.data.pop(r) self.to_index.pop(r) for i in range(r, len(self)): self.index_arr[self.to_index[i]] -= 1 return r以上就是python实现对和索引堆的具体方式。希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
如下所示:importjava.util.Arrays;//小顶堆的代码实现publicclassHeap{//向下调整,顶端的大值往下调,主要用于删除和建堆,
堆溢出:复制代码代码如下:/***@authorLXA*堆溢出*/publicclassHeap{publicstaticvoidmain(String[]ar
堆分配存储表示法存储结构:构建堆来存储字符串,本质上是顺序表实现代码:#include#include#include#defineOK1#defineERRO
本文实例讲述了Python实现的堆排序算法。分享给大家供大家参考,具体如下:堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆是一个近似完
本文实例讲述了python自动格式化json文件的方法。分享给大家供大家参考。具体如下:这里主要实现将代码混乱的json文件格式化。还有一小堆python常用算