时间:2021-05-22
本文实例讲述了python图的深度优先和广度优先算法。分享给大家供大家参考,具体如下:
首先有一个概念:回溯
回溯法(探索与回溯法)是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。
深度优先算法:
(1)访问初始顶点v并标记顶点v已访问。
(2)查找顶点v的第一个邻接顶点w。
(3)若顶点v的邻接顶点w存在,则继续执行;否则回溯到v,再找v的另外一个未访问过的邻接点。
(4)若顶点w尚未被访问,则访问顶点w并标记顶点w为已访问。
(5)继续查找顶点w的下一个邻接顶点wi,如果v取值wi转到步骤(3)。直到连通图中所有顶点全部访问过为止。
广度优先算法:
(1)顶点v入队列。
(2)当队列非空时则继续执行,否则算法结束。
(3)出队列取得队头顶点v;访问顶点v并标记顶点v已被访问。
(4)查找顶点v的第一个邻接顶点col。
(5)若v的邻接顶点col未被访问过的,则col入队列。
(6)继续查找顶点v的另一个新的邻接顶点col,转到步骤(5)。直到顶点v的所有未被访问过的邻接点处理完。转到步骤(2)。
代码:
#!/usr/bin/python# -*- coding: utf-8 -*-class Graph(object): def __init__(self,*args,**kwargs): self.node_neighbors = {} self.visited = {} def add_nodes(self,nodelist): for node in nodelist: self.add_node(node) def add_node(self,node): if not node in self.nodes(): self.node_neighbors[node] = [] def add_edge(self,edge): u,v = edge if(v not in self.node_neighbors[u]) and ( u not in self.node_neighbors[v]): self.node_neighbors[u].append(v) if(u!=v): self.node_neighbors[v].append(u) def nodes(self): return self.node_neighbors.keys() def depth_first_search(self,root=None): order = [] def dfs(node): self.visited[node] = True order.append(node) for n in self.node_neighbors[node]: if not n in self.visited: dfs(n) if root: dfs(root) for node in self.nodes(): if not node in self.visited: dfs(node) print order return order def breadth_first_search(self,root=None): queue = [] order = [] def bfs(): while len(queue)> 0: node = queue.pop(0) self.visited[node] = True for n in self.node_neighbors[node]: if (not n in self.visited) and (not n in queue): queue.append(n) order.append(n) if root: queue.append(root) order.append(root) bfs() for node in self.nodes(): if not node in self.visited: queue.append(node) order.append(node) bfs() print order return orderif __name__ == '__main__': g = Graph()g.add_nodes([i+1 for i in range(8)])g.add_edge((1, 2))g.add_edge((1, 3))g.add_edge((2, 4))g.add_edge((2, 5))g.add_edge((4, 8))g.add_edge((5, 8))g.add_edge((3, 6))g.add_edge((3, 7))g.add_edge((6, 7))print "nodes:", g.nodes()order = g.breadth_first_search(1)order = g.depth_first_search(1)结果:
nodes: [1, 2, 3, 4, 5, 6, 7, 8]
广度优先:
[1, 2, 3, 4, 5, 6, 7, 8]
深度优先:
[1, 2, 4, 8, 5, 3, 6, 7]
更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python加密解密算法与技巧总结》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》
希望本文所述对大家Python程序设计有所帮助。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本文实例讲述了Python数据结构与算法之图的广度优先与深度优先搜索算法。分享给大家供大家参考,具体如下:根据维基百科的伪代码实现:广度优先BFS:使用队列,集
本文实例讲述了JavaScript树的深度优先遍历和广度优先遍历算法。分享给大家供大家参考,具体如下:1、深度优先遍历的递归写法functiondeepTrav
本文实例讲述了java实现二叉树的深度优先遍历和广度优先遍历算法。分享给大家供大家参考,具体如下:1.分析二叉树的深度优先遍历的非递归的通用做法是采用栈,广度优
本文实例讲述了PHP实现广度优先搜索算法。分享给大家供大家参考,具体如下:广度优先搜索的算法思想Breadth-FirstTraversal广度优先遍历是连通图
广度优先搜索适用范围:无权重的图,与深度优先搜索相比,深度优先搜索法占内存少但速度较慢,广度优先搜索算法占内存多但速度较快复杂度:时间复杂度为O(V+E),V为