时间:2021-05-22
本文实例讲述了pytorch制作自己的LMDB数据操作。分享给大家供大家参考,具体如下:
记录下pytorch里如何使用lmdb的code,自用
code就是ASTER里数据制作部分的代码改了点,aster_train.txt里面就算图片的完整路径每行一个,图片同目录下有同名的txt,里面记着jpg的标签
import osimport lmdb # install lmdb by "pip install lmdb"import cv2import numpy as npfrom tqdm import tqdmimport sixfrom PIL import Imageimport scipy.io as siofrom tqdm import tqdmimport redef checkImageIsValid(imageBin): if imageBin is None: return False imageBuf = np.fromstring(imageBin, dtype=np.uint8) img = cv2.imdecode(imageBuf, cv2.IMREAD_GRAYSCALE) imgH, imgW = img.shape[0], img.shape[1] if imgH * imgW == 0: return False return Truedef writeCache(env, cache): with env.begin(write=True) as txn: for k, v in cache.items(): txn.put(k.encode(), v)def _is_difficult(word): assert isinstance(word, str) return not re.match('^[\w]+$', word)def createDataset(outputPath, imagePathList, labelList, lexiconList=None, checkValid=True): """ Create LMDB dataset for CRNN training. ARGS: outputPath : LMDB output path imagePathList : list of image path labelList : list of corresponding groundtruth texts lexiconList : (optional) list of lexicon lists checkValid : if true, check the validity of every image """ assert(len(imagePathList) == len(labelList)) nSamples = len(imagePathList) env = lmdb.open(outputPath, map_size=1099511627776)#最大空间1048576GB cache = {} cnt = 1 for i in range(nSamples): imagePath = imagePathList[i] label = labelList[i] if len(label) == 0: continue if not os.path.exists(imagePath): print('%s does not exist' % imagePath) continue with open(imagePath, 'rb') as f: imageBin = f.read() if checkValid: if not checkImageIsValid(imageBin): print('%s is not a valid image' % imagePath) continue #数据库中都是二进制数据 imageKey = 'image-%09d' % cnt#9位数不足填零 labelKey = 'label-%09d' % cnt cache[imageKey] = imageBin cache[labelKey] = label.encode() if lexiconList: lexiconKey = 'lexicon-%09d' % cnt cache[lexiconKey] = ' '.join(lexiconList[i]) if cnt % 1000 == 0: writeCache(env, cache) cache = {} print('Written %d / %d' % (cnt, nSamples)) cnt += 1 nSamples = cnt-1 cache['num-samples'] = str(nSamples).encode() writeCache(env, cache) print('Created dataset with %d samples' % nSamples)def get_sample_list(txt_path:str): with open(txt_path,'r') as fr: jpg_list=[x.strip() for x in fr.readlines() if os.path.exists(x.replace('.jpg','.txt').strip())] txt_content_list=[] for jpg in jpg_list: label_path=jpg.replace('.jpg','.txt') with open(label_path,'r') as fr: try: str_tmp=fr.readline() except UnicodeDecodeError as e: print(label_path) raise(e) txt_content_list.append(str_tmp.strip()) return jpg_list,txt_content_listif __name__ == "__main__": txt_path='/home/gpu-server/disk/disk1/NumberData/8NumberSample/aster_train.txt' lmdb_output_path = '/home/gpu-server/project/aster/dataset/train' imagePathList,labelList=get_sample_list(txt_path) createDataset(lmdb_output_path, imagePathList, labelList)这里用的pytorch的dataloader,简单记录一下,人比较懒,代码就直接抄过来,不整理拆分了,重点看__getitem__
from __future__ import absolute_import# import sys# sys.path.append('./')import os# import moxing as moximport picklefrom tqdm import tqdmfrom PIL import Image, ImageFileimport numpy as npimport randomimport cv2import lmdbimport sysimport siximport torchfrom torch.utils import datafrom torch.utils.data import samplerfrom torchvision import transformsfrom lib.utils.labelmaps import get_vocabulary, labels2strsfrom lib.utils import to_numpyImageFile.LOAD_TRUNCATED_IMAGES = Truefrom config import get_argsglobal_args = get_args(sys.argv[1:])if global_args.run_on_remote: import moxing as mox #moxing是一个分布式的框架 跳过class LmdbDataset(data.Dataset): def __init__(self, root, voc_type, max_len, num_samples, transform=None): super(LmdbDataset, self).__init__() if global_args.run_on_remote: dataset_name = os.path.basename(root) data_cache_url = "/cache/%s" % dataset_name if not os.path.exists(data_cache_url): os.makedirs(data_cache_url) if mox.file.exists(root): mox.file.copy_parallel(root, data_cache_url) else: raise ValueError("%s not exists!" % root) self.env = lmdb.open(data_cache_url, max_readers=32, readonly=True) else: self.env = lmdb.open(root, max_readers=32, readonly=True) assert self.env is not None, "cannot create lmdb from %s" % root self.txn = self.env.begin() self.voc_type = voc_type self.transform = transform self.max_len = max_len self.nSamples = int(self.txn.get(b"num-samples")) self.nSamples = min(self.nSamples, num_samples) assert voc_type in ['LOWERCASE', 'ALLCASES', 'ALLCASES_SYMBOLS','DIGITS'] self.EOS = 'EOS' self.PADDING = 'PADDING' self.UNKNOWN = 'UNKNOWN' self.voc = get_vocabulary(voc_type, EOS=self.EOS, PADDING=self.PADDING, UNKNOWN=self.UNKNOWN) self.char2id = dict(zip(self.voc, range(len(self.voc)))) self.id2char = dict(zip(range(len(self.voc)), self.voc)) self.rec_num_classes = len(self.voc) self.lowercase = (voc_type == 'LOWERCASE') def __len__(self): return self.nSamples def __getitem__(self, index): assert index <= len(self), 'index range error' index += 1 img_key = b'image-%09d' % index imgbuf = self.txn.get(img_key) #由于Image.open需要一个类文件对象 所以这里需要把二进制转为一个类文件对象 buf = six.BytesIO() buf.write(imgbuf) buf.seek(0) try: img = Image.open(buf).convert('RGB') # img = Image.open(buf).convert('L') # img = img.convert('RGB') except IOError: print('Corrupted image for %d' % index) return self[index + 1] # reconition labels label_key = b'label-%09d' % index word = self.txn.get(label_key).decode() if self.lowercase: word = word.lower() ## fill with the padding token label = np.full((self.max_len,), self.char2id[self.PADDING], dtype=np.int) label_list = [] for char in word: if char in self.char2id: label_list.append(self.char2id[char]) else: ## add the unknown token print('{0} is out of vocabulary.'.format(char)) label_list.append(self.char2id[self.UNKNOWN]) ## add a stop token label_list = label_list + [self.char2id[self.EOS]] assert len(label_list) <= self.max_len label[:len(label_list)] = np.array(label_list) if len(label) <= 0: return self[index + 1] # label length label_len = len(label_list) if self.transform is not None: img = self.transform(img) return img, label, label_len更多关于Python相关内容可查看本站专题:《Python数学运算技巧总结》、《Python图片操作技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》
希望本文所述对大家Python程序设计有所帮助。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
由于Caffe使用的存储图像的数据库是lmdb,因此有时候需要对lmdb文件进行操作,本文主要讲解如何用Python合并lmdb文件。没有lmdb支持的,需要用
linux中,可以使用指令pipinstalllmdb安装lmdb包。----lmdb数据库文件生成增改删查1、生成一个空的lmdb数据库文件#-*-codin
PyTorch基础入门一:PyTorch基本数据类型1)Tensor(张量)Pytorch里面处理的最基本的操作对象就是Tensor(张量),它表示的其实就是一
在crnn训练的时候需要用到lmdb格式的数据集,下面是python生成lmdb个是数据集的代码,注意一定要在linux系统下,否则会读入图像的时候出问题,可能
自定义数据集在训练深度学习模型之前,样本集的制作非常重要。在pytorch中,提供了一些接口和类,方便我们定义自己的数据集合,下面完整的试验自定义样本集的整个流