时间:2021-05-22
本文实例讲述了基于Python实现的ID3决策树功能。分享给大家供大家参考,具体如下:
ID3算法是决策树的一种,它是基于奥卡姆剃刀原理的,即用尽量用较少的东西做更多的事。ID3算法,即Iterative Dichotomiser 3,迭代二叉树3代,是Ross Quinlan发明的一种决策树算法,这个算法的基础就是上面提到的奥卡姆剃刀原理,越是小型的决策树越优于大的决策树,尽管如此,也不总是生成最小的树型结构,而是一个启发式算法。
如下示例是一个判断海洋生物数据是否是鱼类而构建的基于ID3思想的决策树
# coding=utf-8import operatorfrom math import logimport timedef createDataSet(): dataSet = [[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no'], [0,0,'maybe']] labels = ['no surfaceing', 'flippers'] return dataSet, labels# 计算香农熵def calcShannonEnt(dataSet): numEntries = len(dataSet) labelCounts = {} for feaVec in dataSet: currentLabel = feaVec[-1] if currentLabel not in labelCounts: labelCounts[currentLabel] = 0 labelCounts[currentLabel] += 1 shannonEnt = 0.0 for key in labelCounts: prob = float(labelCounts[key]) / numEntries shannonEnt -= prob * log(prob, 2) return shannonEntdef splitDataSet(dataSet, axis, value): retDataSet = [] for featVec in dataSet: if featVec[axis] == value: reducedFeatVec = featVec[:axis] reducedFeatVec.extend(featVec[axis + 1:]) retDataSet.append(reducedFeatVec) return retDataSetdef chooseBestFeatureToSplit(dataSet): numFeatures = len(dataSet[0]) - 1 # 因为数据集的最后一项是标签 baseEntropy = calcShannonEnt(dataSet) bestInfoGain = 0.0 bestFeature = -1 for i in range(numFeatures): featList = [example[i] for example in dataSet] uniqueVals = set(featList) newEntropy = 0.0 for value in uniqueVals: subDataSet = splitDataSet(dataSet, i, value) prob = len(subDataSet) / float(len(dataSet)) newEntropy += prob * calcShannonEnt(subDataSet) infoGain = baseEntropy - newEntropy if infoGain > bestInfoGain: bestInfoGain = infoGain bestFeature = i return bestFeature# 因为我们递归构建决策树是根据属性的消耗进行计算的,所以可能会存在最后属性用完了,但是分类# 还是没有算完,这时候就会采用多数表决的方式计算节点分类def majorityCnt(classList): classCount = {} for vote in classList: if vote not in classCount.keys(): classCount[vote] = 0 classCount[vote] += 1 return max(classCount)def createTree(dataSet, labels): classList = [example[-1] for example in dataSet] if classList.count(classList[0]) == len(classList): # 类别相同则停止划分 return classList[0] if len(dataSet[0]) == 1: # 所有特征已经用完 return majorityCnt(classList) bestFeat = chooseBestFeatureToSplit(dataSet) bestFeatLabel = labels[bestFeat] myTree = {bestFeatLabel: {}} del (labels[bestFeat]) featValues = [example[bestFeat] for example in dataSet] uniqueVals = set(featValues) for value in uniqueVals: subLabels = labels[:] # 为了不改变原始列表的内容复制了一下 myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels) return myTreedef main(): data, label = createDataSet() t1 = time.clock() myTree = createTree(data, label) t2 = time.clock() print myTree print 'execute for ', t2 - t1if __name__ == '__main__': main()运行结果如下:
{'no surfaceing': {0: {'flippers': {0: 'maybe', 1: 'no'}}, 1: {'flippers': {0: 'no', 1: 'yes'}}}}execute for 0.0103958394532最后我们测试一下这个脚本即可,如果想把这个生成的决策树用图像画出来,也只是在需要在脚本里面定义一个plottree的函数即可。
更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python加密解密算法与技巧总结》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》
希望本文所述对大家Python程序设计有所帮助。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
ID3决策树是以信息增益作为决策标准的一种贪心决策树算法#-*-coding:utf-8-*-fromnumpyimport*importmathimportc
本文实例为大家分享了python实现ID3决策树算法的具体代码,供大家参考,具体内容如下'''''CreatedonJan30,2015@author:史帅''
上一篇博客主要介绍了决策树的原理,这篇主要介绍他的实现,代码环境python3.4,实现的是ID3算法,首先为了后面matplotlib的绘图方便,我把原来的中
这是一个判断海洋生物数据是否是鱼类而构建的基于ID3思想的决策树,供大家参考,具体内容如下#coding=utf-8importoperatorfrommath
在周志华的西瓜书和李航的统计机器学习中对决策树ID3算法都有很详细的解释,如何实现呢?核心点有如下几个步骤step1:计算香农熵frommathimportlo