时间:2021-05-22
本文实例为大家分享了python opencv识别图像轮廓的具体代码,供大家参考,具体内容如下
要求:用矩形或者圆形框住图片中的云朵(不要求全部框出)
轮廓检测
Opencv-Python接口中使用cv2.findContours()函数来查找检测物体的轮廓。
import cv2img = cv2.imread('cloud.jpg')# 灰度图像gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 二值化ret, binary = cv2.threshold(gray, 175, 255, cv2.THRESH_BINARY)img1, contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)# 以圆形框出云朵# for i in range(len(contours)):# (x, y), radius = cv2.minEnclosingCircle(contours[i])# center = (int(x), int(y))# radius = int(radius)# img = cv2.circle(img, center, radius, (0, 255, 0), 2)#以云朵边界轮廓框出云朵cv2.drawContours(img, contours, -1, (0, 0, 255), 3)cv2.imshow("img", img)cv2.waitKey(0)需要注意的是cv2.findContours()函数接受的参数为二值图,即黑白的(不是灰度图),所以读取的图像要先转成灰度的,再转成二值图。
cv2.findContours()函数
函数的原型为:
cv2.findContours(image, mode, method[, contours[, hierarchy[, offset ]]])返回两个值:contours,hierarchy。注:opencv3会返回三个值,分别是img, countours, hierarchy
参数说明
第一个参数是寻找轮廓的图像
第二个参数表示轮廓的检索模式,有四种:
1. cv2.RETR_EXTERNAL表示只检测外轮廓
2. cv2.RETR_LIST检测的轮廓不建立等级关系
3. cv2.RETR_CCOMP建立两个等级的轮廓,上面的一层为外边界,里面的一层为内孔的边界信息。如果内孔内还有一个连通物体,这个物体的边界也在顶层。
4. cv2.RETR_TREE建立一个等级树结构的轮廓。
第三个参数method为轮廓的近似办法
cv2.CHAIN_APPROX_NONE存储所有的轮廓点,相邻的两个点的像素位置差不超过1,
即max(abs(x1−x2),abs(y2−y1))==1max(abs(x1−x2),abs(y2−y1))==1
cv2.CHAIN_APPROX_SIMPLE压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息
cv2.CHAIN_APPROX_TC89_L1,CV_CHAIN_APPROX_TC89_KCOS使用teh-Chinl chain 近似算法
返回值
cv2.findContours()函数返回两个值,一个是轮廓本身,还有一个是每条轮廓对应的属性。
contour返回值
cv2.findContours()函数首先返回一个list,list中每个元素都是图像中的一个轮廓,用numpy中的ndarray表示。这个概念非常重要。在下面drawContours中会看见。可以打印观察contours的数据类型。
print (type(contours)) print (type(contours[0])) print (len(contours))hierarchy返回值
该函数还可返回一个可选的hiararchy结果,这是一个ndarray,其中的元素个数和轮廓个数相同,每个轮廓contours[i]对应4个hierarchy元素hierarchy[i][0] ~hierarchy[i][3],分别表示后一个轮廓、前一个轮廓、父轮廓、内嵌轮廓的索引编号,如果没有对应项,则该值为负数。
轮廓的绘制
OpenCV中通过cv2.drawContours在图像上绘制轮廓。
cv2.drawContours(image, contours, contourIdx, color[, thickness[, lineType[, hierarchy[, maxLevel[, offset ]]]]])第一个参数是指明在哪幅图像上绘制轮廓;
第二个参数是轮廓本身,在Python中是一个list;
第三个参数指定绘制轮廓list中的哪条轮廓,如果是-1,则绘制其中的所有轮廓。
后面的参数很简单。其中thickness表明轮廓线的宽度,如果是-1(cv2.FILLED),则为填充模式。
OpenCV中通过cv2.minEnclosingCircle()可以帮我们找到一个对象的外接圆。它是所有能够包括对象的圆中面积最小的一个。
(x,y),radius = cv2.minEnclosingCircle(contours[i])center = (int(x),int(y))radius = int(radius)img = cv2.circle(img,center,radius,(0,255,0),2)本文已被收录到专题《python图片处理操作》 ,欢迎大家点击学习更多精彩内容。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
利用Python+opencv实现从摄像头捕获图像,识别其中的人眼/人脸,并打上马赛克。系统环境:Windows7+Python3.6.3+opencv3.4.
本项目利用python以及opencv实现信用卡的数字识别前期准备导入工具包定义功能函数模板图像处理读取模板图像cv2.imread(img)灰度化处理cv2.
python-opencv获取二值图像轮廓及中心点坐标代码:groundtruth=cv2.imread(groundtruth_path)[:,:,0]h1,
基于OpenCV2.4.8和python2.7实现简单的手势识别。以下为基本步骤1.去除背景,提取手的轮廓2.RGB->YUV,同时计算直方图3.进行形态学滤波
本文实例为大家分享了Opencv处理图像之轮廓提取,使用cvfindContours对图像进行轮廓检测,供大家参考,具体内容如下#include#include