时间:2021-05-22
本文实例为大家分享了pytorch实现MNIST手写体识别的具体代码,供大家参考,具体内容如下
实验环境
pytorch 1.4
Windows 10
python 3.7
cuda 10.1(我笔记本上没有可以使用cuda的显卡)
实验过程
1. 确定我们要加载的库
import torchimport torch.nn as nnimport torchvision #这里面直接加载MNIST数据的方法import torchvision.transforms as transforms # 将数据转为Tensorimport torch.optim as optim import torch.utils.data.dataloader as dataloader2. 加载数据
这里使用所有数据进行训练,再使用所有数据进行测试
train_set = torchvision.datasets.MNIST( root='./data', # 文件存储位置 train=True, transform=transforms.ToTensor(), download=True)train_dataloader = dataloader.DataLoader(dataset=train_set,shuffle=False,batch_size=100)# dataset可以省'''dataloader返回(images,labels)其中,images维度:[batch_size,1,28,28]labels:[batch_size],即图片对应的'''test_set = torchvision.datasets.MNIST( root='./data', train=False, transform=transforms.ToTensor(), download=True)test_dataloader = dataloader.DataLoader(test_set,batch_size=100,shuffle=False) # dataset可以省3. 定义神经网络模型
这里使用全神经网络作为模型
class NeuralNet(nn.Module): def __init__(self,in_num,h_num,out_num): super(NeuralNet,self).__init__() self.ln1 = nn.Linear(in_num,h_num) self.ln2 = nn.Linear(h_num,out_num) self.relu = nn.ReLU() def forward(self,x): return self.ln2(self.relu(self.ln1(x)))4. 模型训练
in_num = 784 # 输入维度h_num = 500 # 隐藏层维度out_num = 10 # 输出维度epochs = 30 # 迭代次数learning_rate = 0.001USE_CUDA = torch.cuda.is_available() # 定义是否可以使用cudamodel = NeuralNet(in_num,h_num,out_num) # 初始化模型optimizer = optim.Adam(model.parameters(),lr=learning_rate) # 使用Adamloss_fn = nn.CrossEntropyLoss() # 损失函数for e in range(epochs): for i,data in enumerate(train_dataloader): (images,labels) = data images = images.reshape(-1,28*28) # [batch_size,784] if USE_CUDA: images = images.cuda() # 使用cuda labels = labels.cuda() # 使用cuda y_pred = model(images) # 预测 loss = loss_fn(y_pred,labels) # 计算损失 optimizer.zero_grad() loss.backward() optimizer.step() n = e * i +1 if n % 100 == 0: print(n,'loss:',loss.item())训练模型的loss部分截图如下:
5. 测试模型
with torch.no_grad(): total = 0 correct = 0 for (images,labels) in test_dataloader: images = images.reshape(-1,28*28) if USE_CUDA: images = images.cuda() labels = labels.cuda() result = model(images) prediction = torch.max(result, 1)[1] # 这里需要有[1],因为它返回了概率还有标签 total += labels.size(0) correct += (prediction == labels).sum().item() print("The accuracy of total {} images: {}%".format(total, 100 * correct/total))实验结果
最终实验的正确率达到:98.22%
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
实验环境win10+anaconda+jupyternotebookPytorch1.1.0Python3.7gpu环境(可选)MNIST数据集介绍MNIST包
在前几天写的一篇博文《如何从TensorFlow的mnist数据集导出手写体数字图片》中,我们介绍了如何通过TensorFlow将mnist手写体数字集导出到本
MNIST是一个非常有名的手写体数字识别数据集,TensorFlow对MNIST数据集做了封装,可以直接调用。MNIST数据集包含了60000张图片作为训练数据
本文实例讲述了Pytorch实现的手写数字mnist识别功能。分享给大家供大家参考,具体如下:importtorchimporttorchvisionastvi
一,mnist数据集形如上图的数字手写体就是mnist数据集。二,GAN原理(生成对抗网络)GAN网络一共由两部分组成:一个是伪造器(Generator,简称G