时间:2021-05-22
本文实例讲述了Python基于动态规划算法解决01背包问题。分享给大家供大家参考,具体如下:
在01背包问题中,在选择是否要把一个物品加到背包中,必须把该物品加进去的子问题的解与不取该物品的子问题的解进行比较,这种方式形成的问题导致了许多重叠子问题,使用动态规划来解决。n=5是物品的数量,c=10是书包能承受的重量,w=[2,2,6,5,4]是每个物品的重量,v=[6,3,5,4,6]是每个物品的价值,先把递归的定义写出来:
然后自底向上实现,代码如下:
def bag(n,c,w,v): res=[[-1 for j in range(c+1)] for i in range(n+1)] for j in range(c+1): res[0][j]=0 for i in range(1,n+1): for j in range(1,c+1): res[i][j]=res[i-1][j] if j>=w[i-1] and res[i][j]<res[i-1][j-w[i-1]]+v[i-1]: res[i][j]=res[i-1][j-w[i-1]]+v[i-1] return resdef show(n,c,w,res): print('最大价值为:',res[n][c]) x=[False for i in range(n)] j=c for i in range(1,n+1): if res[i][j]>res[i-1][j]: x[i-1]=True j-=w[i-1] print('选择的物品为:') for i in range(n): if x[i]: print('第',i,'个,',end='') print('')if __name__=='__main__': n=5 c=10 w=[2,2,6,5,4] v=[6,3,5,4,6] res=bag(n,c,w,v) show(n,c,w,res)输出结果如下:
更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python加密解密算法与技巧总结》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》
希望本文所述对大家Python程序设计有所帮助。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本文实例讲述了Python基于回溯法解决01背包问题。分享给大家供大家参考,具体如下:同样的01背包问题,前面采用动态规划的方法,现在用回溯法解决。回溯法采用深
本文实例讲述了Python基于动态规划算法计算单词距离。分享给大家供大家参考。具体如下:#!/usr/bin/envpython#coding=utf-8def
本文实例讲述了PHP贪婪算法解决0-1背包问题的方法。分享给大家供大家参考。具体分析如下:贪心算法解决0-1背包问题,全局最优解通过局部最优解来获得!比动态规划
本文实例讲述了C#使用动态规划解决0-1背包问题的方法。分享给大家供大家参考。具体如下://利用动态规划解决0-1背包问题usingSystem;usingSy
基于Python实现对求解最长回文子串的动态规划算法,具体内容如下1、题目给定一个字符串s,找到s中最长的回文子串。你可以假设s的最大长度为1000。示例1:输