时间:2021-05-22
本文实例讲述了Python实现的递归神经网络。分享给大家供大家参考,具体如下:
# Recurrent Neural Networksimport copy, numpy as npnp.random.seed(0)# compute sigmoid nonlinearitydef sigmoid(x): output = 1/(1+np.exp(-x)) return output# convert output of sigmoid function to its derivativedef sigmoid_output_to_derivative(output): return output*(1-output)# training dataset generationint2binary = {}binary_dim = 8largest_number = pow(2,binary_dim)binary = np.unpackbits( np.array([range(largest_number)],dtype=np.uint8).T,axis=1)for i in range(largest_number): int2binary[i] = binary[i]# input variablesalpha = 0.1input_dim = 2hidden_dim = 16output_dim = 1# initialize neural network weightssynapse_0 = 2*np.random.random((input_dim,hidden_dim)) - 1synapse_1 = 2*np.random.random((hidden_dim,output_dim)) - 1synapse_h = 2*np.random.random((hidden_dim,hidden_dim)) - 1synapse_0_update = np.zeros_like(synapse_0)synapse_1_update = np.zeros_like(synapse_1)synapse_h_update = np.zeros_like(synapse_h)# training logicfor j in range(10000): # generate a simple addition problem (a + b = c) a_int = np.random.randint(largest_number/2) # int version a = int2binary[a_int] # binary encoding b_int = np.random.randint(largest_number/2) # int version b = int2binary[b_int] # binary encoding # true answer c_int = a_int + b_int c = int2binary[c_int] # where we'll store our best guess (binary encoded) d = np.zeros_like(c) overallError = 0 layer_2_deltas = list() layer_1_values = list() layer_1_values.append(np.zeros(hidden_dim)) # moving along the positions in the binary encoding for position in range(binary_dim): # generate input and output X = np.array([[a[binary_dim - position - 1],b[binary_dim - position - 1]]]) y = np.array([[c[binary_dim - position - 1]]]).T # hidden layer (input ~+ prev_hidden) layer_1 = sigmoid(np.dot(X,synapse_0) + np.dot(layer_1_values[-1],synapse_h)) # output layer (new binary representation) layer_2 = sigmoid(np.dot(layer_1,synapse_1)) # did we miss?... if so, by how much? layer_2_error = y - layer_2 layer_2_deltas.append((layer_2_error)*sigmoid_output_to_derivative(layer_2)) overallError += np.abs(layer_2_error[0]) # decode estimate so we can print(it out) d[binary_dim - position - 1] = np.round(layer_2[0][0]) # store hidden layer so we can use it in the next timestep layer_1_values.append(copy.deepcopy(layer_1)) future_layer_1_delta = np.zeros(hidden_dim) for position in range(binary_dim): X = np.array([[a[position],b[position]]]) layer_1 = layer_1_values[-position-1] prev_layer_1 = layer_1_values[-position-2] # error at output layer layer_2_delta = layer_2_deltas[-position-1] # error at hidden layer layer_1_delta = (future_layer_1_delta.dot(synapse_h.T) + layer_2_delta.dot(synapse_1.T)) * sigmoid_output_to_derivative(layer_1) # let's update all our weights so we can try again synapse_1_update += np.atleast_2d(layer_1).T.dot(layer_2_delta) synapse_h_update += np.atleast_2d(prev_layer_1).T.dot(layer_1_delta) synapse_0_update += X.T.dot(layer_1_delta) future_layer_1_delta = layer_1_delta synapse_0 += synapse_0_update * alpha synapse_1 += synapse_1_update * alpha synapse_h += synapse_h_update * alpha synapse_0_update *= 0 synapse_1_update *= 0 synapse_h_update *= 0 # print(out progress) if j % 1000 == 0: print("Error:" + str(overallError)) print("Pred:" + str(d)) print("True:" + str(c)) out = 0 for index,x in enumerate(reversed(d)): out += x*pow(2,index) print(str(a_int) + " + " + str(b_int) + " = " + str(out)) print("------------")运行输出:
Error:[ 3.45638663]Pred:[0 0 0 0 0 0 0 1]True:[0 1 0 0 0 1 0 1]9 + 60 = 1------------Error:[ 3.63389116]Pred:[1 1 1 1 1 1 1 1]True:[0 0 1 1 1 1 1 1]28 + 35 = 255------------Error:[ 3.91366595]Pred:[0 1 0 0 1 0 0 0]True:[1 0 1 0 0 0 0 0]116 + 44 = 72------------Error:[ 3.72191702]Pred:[1 1 0 1 1 1 1 1]True:[0 1 0 0 1 1 0 1]4 + 73 = 223------------Error:[ 3.5852713]Pred:[0 0 0 0 1 0 0 0]True:[0 1 0 1 0 0 1 0]71 + 11 = 8------------Error:[ 2.53352328]Pred:[1 0 1 0 0 0 1 0]True:[1 1 0 0 0 0 1 0]81 + 113 = 162------------Error:[ 0.57691441]Pred:[0 1 0 1 0 0 0 1]True:[0 1 0 1 0 0 0 1]81 + 0 = 81------------Error:[ 1.42589952]Pred:[1 0 0 0 0 0 0 1]True:[1 0 0 0 0 0 0 1]4 + 125 = 129------------Error:[ 0.47477457]Pred:[0 0 1 1 1 0 0 0]True:[0 0 1 1 1 0 0 0]39 + 17 = 56------------Error:[ 0.21595037]Pred:[0 0 0 0 1 1 1 0]True:[0 0 0 0 1 1 1 0]11 + 3 = 14------------英文原文:https://iamtrask.github.io/2015/11/15/anyone-can-code-lstm/
更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》
希望本文所述对大家Python程序设计有所帮助。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
python实现简单神经网络算法,供大家参考,具体内容如下python实现二层神经网络包括输入层和输出层importnumpyasnp#sigmoidfunct
本文实例为大家分享了python实现ANN的具体代码,供大家参考,具体内容如下1.简要介绍神经网络神经网络是具有适应性的简单单元组成的广泛并行互联的网络。它的组
本文实例讲述了Python实现的三层BP神经网络算法。分享给大家供大家参考,具体如下:这是一个非常漂亮的三层反向传播神经网络的python实现,下一步我准备试着
本文用于利用Pytorch实现神经网络的分类!!!1.训练神经网络分类模型importtorchfromtorch.autogradimportVariable
之前的一篇博客专门介绍了神经网络的搭建,是在python环境下基于numpy搭建的,之前的numpy版两层神经网络,不能支持增加神经网络的层数。最近看了一个介绍