时间:2021-05-22
本文实例讲述了Python实现的朴素贝叶斯分类器。分享给大家供大家参考,具体如下:
因工作中需要,自己写了一个朴素贝叶斯分类器。
对于未出现的属性,采取了拉普拉斯平滑,避免未出现的属性的概率为零导致整个条件概率都为零的情况出现。
朴素贝叶斯的基本原理网上很容易查到,这里不再叙述,直接附上代码
因工作中需要,自己写了一个朴素贝叶斯分类器。对于未出现的属性,采取了拉普拉斯平滑,避免未出现的属性的概率为零导致整个条件概率都为零的情况出现。
class NBClassify(object): def __init__(self, fillNa = 1): self.fillNa = 1 pass def train(self, trainSet): # 计算每种类别的概率 # 保存所有tag的所有种类,及它们出现的频次 dictTag = {} for subTuple in trainSet: dictTag[str(subTuple[1])] = 1 if str(subTuple[1]) not in dictTag.keys() else dictTag[str(subTuple[1])] + 1 # 保存每个tag本身的概率 tagProbablity = {} totalFreq = sum([value for value in dictTag.values()]) for key, value in dictTag.items(): tagProbablity[key] = value / totalFreq # print(tagProbablity) self.tagProbablity = tagProbablity ############################################################################## # 计算特征的条件概率 # 保存特征属性基本信息{特征1:{值1:出现5次, 值2:出现1次}, 特征2:{值1:出现1次, 值2:出现5次}} dictFeaturesBase = {} for subTuple in trainSet: for key, value in subTuple[0].items(): if key not in dictFeaturesBase.keys(): dictFeaturesBase[key] = {value:1} else: if value not in dictFeaturesBase[key].keys(): dictFeaturesBase[key][value] = 1 else: dictFeaturesBase[key][value] += 1 # dictFeaturesBase = { # '职业': {'农夫': 1, '教师': 2, '建筑工人': 2, '护士': 1}, # '症状': {'打喷嚏': 3, '头痛': 3} # } dictFeatures = {}.fromkeys([key for key in dictTag]) for key in dictFeatures.keys(): dictFeatures[key] = {}.fromkeys([key for key in dictFeaturesBase]) for key, value in dictFeatures.items(): for subkey in value.keys(): value[subkey] = {}.fromkeys([x for x in dictFeaturesBase[subkey].keys()]) # dictFeatures = { # '感冒 ': {'症状': {'打喷嚏': None, '头痛': None}, '职业': {'护士': None, '农夫': None, '建筑工人': None, '教师': None}}, # '脑震荡': {'症状': {'打喷嚏': None, '头痛': None}, '职业': {'护士': None, '农夫': None, '建筑工人': None, '教师': None}}, # '过敏 ': {'症状': {'打喷嚏': None, '头痛': None}, '职业': {'护士': None, '农夫': None, '建筑工人': None, '教师': None}} # } # initialise dictFeatures for subTuple in trainSet: for key, value in subTuple[0].items(): dictFeatures[subTuple[1]][key][value] = 1 if dictFeatures[subTuple[1]][key][value] == None else dictFeatures[subTuple[1]][key][value] + 1 # print(dictFeatures) # 将驯良样本中没有的项目,由None改为一个非常小的数值,表示其概率极小而并非是零 for tag, featuresDict in dictFeatures.items(): for featureName, fetureValueDict in featuresDict.items(): for featureKey, featureValues in fetureValueDict.items(): if featureValues == None: fetureValueDict[featureKey] = 1 # 由特征频率计算特征的条件概率P(feature|tag) for tag, featuresDict in dictFeatures.items(): for featureName, fetureValueDict in featuresDict.items(): totalCount = sum([x for x in fetureValueDict.values() if x != None]) for featureKey, featureValues in fetureValueDict.items(): fetureValueDict[featureKey] = featureValues/totalCount if featureValues != None else None self.featuresProbablity = dictFeatures ############################################################################## def classify(self, featureDict): resultDict = {} # 计算每个tag的条件概率 for key, value in self.tagProbablity.items(): iNumList = [] for f, v in featureDict.items(): if self.featuresProbablity[key][f][v]: iNumList.append(self.featuresProbablity[key][f][v]) conditionPr = 1 for iNum in iNumList: conditionPr *= iNum resultDict[key] = value * conditionPr # 对比每个tag的条件概率的大小 resultList = sorted(resultDict.items(), key=lambda x:x[1], reverse=True) return resultList[0][0]if __name__ == '__main__': trainSet = [ ({"症状":"打喷嚏", "职业":"护士"}, "感冒 "), ({"症状":"打喷嚏", "职业":"农夫"}, "过敏 "), ({"症状":"头痛", "职业":"建筑工人"}, "脑震荡"), ({"症状":"头痛", "职业":"建筑工人"}, "感冒 "), ({"症状":"打喷嚏", "职业":"教师"}, "感冒 "), ({"症状":"头痛", "职业":"教师"}, "脑震荡"), ] monitor = NBClassify() # trainSet is something like that [(featureDict, tag), ] monitor.train(trainSet) # 打喷嚏的建筑工人 # 请问他患上感冒的概率有多大? result = monitor.classify({"症状":"打喷嚏", "职业":"建筑工人"}) print(result)另:关于朴素贝叶斯算法详细说明还可参看本站前面一篇https://www.jb51.net/article/129903.htm。
更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python加密解密算法与技巧总结》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》
希望本文所述对大家Python程序设计有所帮助。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本代码实现了朴素贝叶斯分类器(假设了条件独立的版本),常用于垃圾邮件分类,进行了拉普拉斯平滑。关于朴素贝叶斯算法原理可以参考博客中原理部分的博文。#!/usr/
一、贝叶斯分类介绍贝叶斯分类器是一个统计分类器。它们能够预测类别所属的概率,如:一个数据对象属于某个类别的概率。贝叶斯分类器是基于贝叶斯定理而构造出来的。对分类
本文实例讲述了朴素贝叶斯算法的python实现方法。分享给大家供大家参考。具体实现方法如下:朴素贝叶斯算法优缺点优点:在数据较少的情况下依然有效,可以处理多类别
朴素贝叶斯估计朴素贝叶斯是基于贝叶斯定理与特征条件独立分布假设的分类方法。首先根据特征条件独立的假设学习输入/输出的联合概率分布,然后基于此模型,对给定的输入x
在实际应用中,我们经常需要使用定时器去触发一些事件。Python中通过线程实现定时器timer,其使用非常简单。看示例:importthreadingdeffu