Python实现的数据结构与算法之基本搜索详解

时间:2021-05-22

本文实例讲述了Python实现的数据结构与算法之基本搜索。分享给大家供大家参考。具体分析如下:

一、顺序搜索

顺序搜索 是最简单直观的搜索方法:从列表开头到末尾,逐个比较待搜索项与列表中的项,直到找到目标项(搜索成功)或者 超出搜索范围 (搜索失败)。

根据列表中的项是否按顺序排列,可以将列表分为 无序列表 和 有序列表。对于 无序列表,超出搜索范围 是指越过列表的末尾;对于 有序列表,超过搜索范围 是指进入列表中大于目标项的区域(发生在目标项小于列表末尾项时)或者指越过列表的末尾(发生在目标项大于列表末尾项时)。

1、无序列表

在无序列表中进行顺序搜索的情况如图所示:

def sequentialSearch(items, target): for item in items: if item == target: return True return False

2、有序列表

在有序列表中进行顺序搜索的情况如图所示:

def orderedSequentialSearch(items, target): for item in items: if item == target: return True elif item > target: break return False

二、二分搜索

实际上,上述orderedSequentialSearch算法并没有很好地利用有序列表的特点。

二分搜索 充分利用了有序列表的优势,该算法的思路非常巧妙:在原列表中,将目标项(target)与列表中间项(middle)进行对比,如果target等于middle,则搜索成功;如果target小于middle,则在middle的左半列表中继续搜索;如果target大于middle,则在middle的右半列表中继续搜索。

在有序列表中进行二分搜索的情况如图所示:

根据实现方式的不同,二分搜索算法可以分为迭代版本和递归版本两种:

1、迭代版本

def iterativeBinarySearch(items, target): first = 0 last = len(items) - 1 while first <= last: middle = (first + last) // 2 if target == items[middle]: return True elif target < items[middle]: last = middle - 1 else: first = middle + 1 return False

2、递归版本

def recursiveBinarySearch(items, target): if len(items) == 0: return False else: middle = len(items) // 2 if target == items[middle]: return True elif target < items[middle]: return recursiveBinarySearch(items[:middle], target) else: return recursiveBinarySearch(items[middle+1:], target)

三、性能比较

上述搜索算法的时间复杂度如下所示:

搜索算法 时间复杂度-----------------------------------sequentialSearch O(n)-----------------------------------orderedSequentialSearch O(n) -----------------------------------iterativeBinarySearch O(log n)-----------------------------------recursiveBinarySearch O(log n)-----------------------------------in O(n)

可以看出,二分搜索 的性能要优于 顺序搜索。

值得注意的是,Python的成员操作符 in 的时间复杂度是O(n),不难猜出,操作符 in 实际采用的是 顺序搜索 算法。

四、算法测试

#!/usr/bin/env python# -*- coding: utf-8 -*-def test_print(algorithm, listname, target): print(' %d is%s in %s' % (target, '' if algorithm(eval(listname), target) else ' not', listname))if __name__ == '__main__': testlist = [1, 2, 32, 8, 17, 19, 42, 13, 0] orderedlist = sorted(testlist) print('sequentialSearch:') test_print(sequentialSearch, 'testlist', 3) test_print(sequentialSearch, 'testlist', 13) print('orderedSequentialSearch:') test_print(orderedSequentialSearch, 'orderedlist', 3) test_print(orderedSequentialSearch, 'orderedlist', 13) print('iterativeBinarySearch:') test_print(iterativeBinarySearch, 'orderedlist', 3) test_print(iterativeBinarySearch, 'orderedlist', 13) print('recursiveBinarySearch:') test_print(recursiveBinarySearch, 'orderedlist', 3) test_print(recursiveBinarySearch, 'orderedlist', 13)

运行结果:

$ python testbasicsearch.pysequentialSearch: 3 is not in testlist 13 is in testlistorderedSequentialSearch: 3 is not in orderedlist 13 is in orderedlistiterativeBinarySearch: 3 is not in orderedlist 13 is in orderedlistrecursiveBinarySearch: 3 is not in orderedlist 13 is in orderedlist

希望本文所述对大家的Python程序设计有所帮助。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章