时间:2021-05-22
本文实例讲述了Python实现简单HTML表格解析的方法。分享给大家供大家参考。具体分析如下:
这里依赖libxml2dom,确保首先安装!导入到你的脚步并调用parse_tables() 函数。
1. source = a string containing the source code you can pass in just the table or the entire page code
2. headers = a list of ints OR a list of strings
If the headers are ints this is for tables with no header, just list the 0 based index of the rows in which you want to extract data.
If the headers are strings this is for tables with header columns (with the tags) it will pull the information from the specified columns
3. The 0 based index of the table in the source code. If there are multiple tables and the table you want to parse is the third table in the code then pass in the number 2 here
It will return a list of lists. each inner list will contain the parsed information.
具体代码如下:
#The goal of table parser is to get specific information from specific#columns in a table.#Input: source code from a typical website#Arguments: a list of headers the user wants to return#Output: A list of lists of the data in each rowimport libxml2domdef parse_tables(source, headers, table_index): """parse_tables(string source, list headers, table_index) headers may be a list of strings if the table has headers defined or headers may be a list of ints if no headers defined this will get data from the rows index. This method returns a list of lists """ #Determine if the headers list is strings or ints and make sure they #are all the same type j = 0 print 'Printing headers: ',headers #route to the correct function #if the header type is int if type(headers[0]) == type(1): #run no_header function return no_header(source, headers, table_index) #if the header type is string elif type(headers[0]) == type('a'): #run the header_given function return header_given(source, headers, table_index) else: #return none if the headers aren't correct return None#This function takes in the source code of the whole page a string list of#headers and the index number of the table on the page. It returns a list of#lists with the scraped informationdef header_given(source, headers, table_index): #initiate a list to hole the return list return_list = [] #initiate a list to hold the index numbers of the data in the rows header_index = [] #get a document object out of the source code doc = libxml2dom.parseString(source,html=1) #get the tables from the document tables = doc.getElementsByTagName('table') try: #try to get focue on the desired table main_table = tables[table_index] except: #if the table doesn't exits then return an error return ['The table index was not found'] #get a list of headers in the table table_headers = main_table.getElementsByTagName('th') #need a sentry value for the header loop loop_sentry = 0 #loop through each header looking for matches for header in table_headers: #if the header is in the desired headers list if header.textContent in headers: #add it to the header_index header_index.append(loop_sentry) #add one to the loop_sentry loop_sentry+=1 #get the rows from the table rows = main_table.getElementsByTagName('tr') #sentry value detecting if the first row is being viewed row_sentry = 0 #loop through the rows in the table, skipping the first row for row in rows: #if row_sentry is 0 this is our first row if row_sentry == 0: #make the row_sentry not 0 row_sentry = 1337 continue #get all cells from the current row cells = row.getElementsByTagName('td') #initiate a list to append into the return_list cell_list = [] #iterate through all of the header index's for i in header_index: #append the cells text content to the cell_list cell_list.append(cells[i].textContent) #append the cell_list to the return_list return_list.append(cell_list) #return the return_list return return_list#This function takes in the source code of the whole page an int list of#headers indicating the index number of the needed item and the index number#of the table on the page. It returns a list of lists with the scraped infodef no_header(source, headers, table_index): #initiate a list to hold the return list return_list = [] #get a document object out of the source code doc = libxml2dom.parseString(source, html=1) #get the tables from document tables = doc.getElementsByTagName('table') try: #Try to get focus on the desired table main_table = tables[table_index] except: #if the table doesn't exits then return an error return ['The table index was not found'] #get all of the rows out of the main_table rows = main_table.getElementsByTagName('tr') #loop through each row for row in rows: #get all cells from the current row cells = row.getElementsByTagName('td') #initiate a list to append into the return_list cell_list = [] #loop through the list of desired headers for i in headers: try: #try to add text from the cell into the cell_list cell_list.append(cells[i].textContent) except: #if there is an error usually an index error just continue continue #append the data scraped into the return_list return_list.append(cell_list) #return the return list return return_list希望本文所述对大家的Python程序设计有所帮助。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
pyquery库是jQuery的Python实现,可以用于解析HTML网页内容,使用方法:复制代码代码如下:frompyqueryimportPyQueryas
本文实例讲述了python实现将html表格转换成CSV文件的方法。分享给大家供大家参考。具体如下:使用方法:pythonhtml2csv.py*.html这段
先给大家展示下效果图:下面用简单方法实现的简单表格编辑功能:简单的HTML代码略过了,下面是js实现过程JavaScript:$(".tables").on("
目前市面上流行的爬虫以python居多,简单了解之后,觉得简单的一些页面的爬虫,主要就是去解析目标页面(html)。那么就在想,java有没有用户方便解析htm
在邮件报表之类的开发任务中,需要生成HTML表格。使用Python生成HTML表格基本没啥难度,for循环遍历一遍数据并输出标签即可。如果需要实现合并单元格,或