时间:2021-05-22
本文实例讲述了Python实现爬虫爬取NBA数据功能。分享给大家供大家参考,具体如下:
爬取的网站为:stat-nba.com,这里爬取的是NBA2016-2017赛季常规赛至2017年1月7日的数据
改变url_header和url_tail即可爬取特定的其他数据。
源代码如下:
#coding=utf-8import sysreload(sys)sys.setdefaultencoding('utf-8')import requestsimport timeimport urllibfrom bs4 import BeautifulSoupimport refrom pyExcelerator import *def getURLLists(url_header,url_tail,pages): """ 获取所有页面的URL列表 """ url_lists = [] url_0 = url_header+'0'+url_tail print url_0 url_lists.append(url_0) for i in range(1,pages+1): url_temp = url_header+str(i)+url_tail url_lists.append(url_temp) return url_listsdef getNBAAllData(url_lists): """ 获取所有2017赛季NBA常规赛数据 """ datasets = [''] for item in url_lists: data1 = getNBASingleData(item) datasets.extend(data1) #去掉数据里的空元素 for item in datasets[:]: if len(item) == 0: datasets.remove(item) return datasetsdef getNBASingleData(url): """ 获取1个页面NBA常规赛数据 """ # url = 'http://stat-nba.com/query_team.php?QueryType=game&order=1&crtcol=date_out&GameType=season&PageNum=3000&Season0=2016&Season1=2017' # html = requests.get(url).text html = urllib.urlopen(url).read() # print html soup = BeautifulSoup(html) data = soup.html.body.find('tbody').text list_data = data.split('\n') # with open('nba_data.txt','a') as fp: # fp.write(data) # for item in list_data[:]: # if len(item) == 0: # list_data.remove(item) return list_datadef saveDataToExcel(datasets,sheetname,filename): book = Workbook() sheet = book.add_sheet(sheetname) sheet.write(0,0,u'序号') sheet.write(0,1,u'球队') sheet.write(0,2,u'时间') sheet.write(0,3,u'结果') sheet.write(0,4,u'主客') sheet.write(0,5,u'比赛') sheet.write(0,6,u'投篮命中率') sheet.write(0,7,u'命中数') sheet.write(0,8,u'出手数') sheet.write(0,9,u'三分命中率') sheet.write(0,10,u'三分命中数') sheet.write(0,11,u'三分出手数') sheet.write(0,12,u'罚球命中率') sheet.write(0,13,u'罚球命中数') sheet.write(0,14,u'罚球出手数') sheet.write(0,15,u'篮板') sheet.write(0,16,u'前场篮板') sheet.write(0,17,u'后场篮板') sheet.write(0,18,u'助攻') sheet.write(0,19,u'抢断') sheet.write(0,20,u'盖帽') sheet.write(0,21,u'失误') sheet.write(0,22,u'犯规') sheet.write(0,23,u'得分') num = 24 row_cnt = 0 data_cnt = 0 data_len = len(datasets) print 'data_len:',data_len while(data_cnt< data_len): row_cnt += 1 print '序号:',row_cnt for col in range(num): # print col sheet.write(row_cnt,col,datasets[data_cnt]) data_cnt += 1 book.save(filename)def writeDataToTxt(datasets): fp = open('nba_data.txt','w') line_cnt = 1 for i in range(len(datasets)-1): #球队名称对齐的操作:如果球队名字过短或者为76人队是 球队名字后面加两个table 否则加1个table if line_cnt % 24 == 2 and len(datasets[i]) < 5 or datasets[i] == u'费城76人': fp.write(datasets[i]+'\t\t') else: fp.write(datasets[i]+'\t') line_cnt += 1 if line_cnt % 24 == 1: fp.write('\n') fp.close()if __name__ == "__main__": pages = int(1132/150) url_header = 'http://stat-nba.com/query_team.php?page=' url_tail = '&QueryType=game&order=1&crtcol=date_out&GameType=season&PageNum=3000&Season0=2016&Season1=2017#label_show_result' url_lists = getURLLists(url_header,url_tail,pages) datasets = getNBAAllData(url_lists) writeDataToTxt(datasets) sheetname = 'nba normal data 2016-2017' str_time = time.strftime('%Y-%m-%d',time.localtime(time.time())) filename = 'nba_normal_data'+str_time+'.xls' saveDataToExcel(datasets,sheetname,filename)更多关于Python相关内容可查看本站专题:《Python Socket编程技巧总结》、《Python正则表达式用法总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》
希望本文所述对大家Python程序设计有所帮助。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
python爬虫-梨视频短视频爬取(线程池)示例代码importrequestsfromlxmlimportetreeimportrandomfrommulti
本文实例讲述了Python实现的爬取小说爬虫功能。分享给大家供大家参考,具体如下:想把顶点小说网上的一篇持续更新的小说下下来,就写了一个简单的爬虫,可以爬取爬取
扫描器需要实现的功能思维导图爬虫编写思路首先需要开发一个爬虫用于收集网站的链接,爬虫需要记录已经爬取的链接和待爬取的链接,并且去重,用Python的set()就
本文实例讲述了Python爬虫实现简单的爬取有道翻译功能。分享给大家供大家参考,具体如下:#-*-coding:utf-8-*-#!python3importu
python爬虫是程序员们一定会掌握的知识,练习python爬虫时,很多人会选择爬取微博练手。python爬虫微博根据微博存在于不同媒介上,所爬取的难度有差异,