时间:2021-05-22
本文实例讲述了Python使用sklearn库实现的各种分类算法简单应用。分享给大家供大家参考,具体如下:
KNN
from sklearn.neighbors import KNeighborsClassifierimport numpy as npdef KNN(X,y,XX):#X,y 分别为训练数据集的数据和标签,XX为测试数据 model = KNeighborsClassifier(n_neighbors=10)#默认为5 model.fit(X,y) predicted = model.predict(XX) return predictedSVM
from sklearn.svm import SVCdef SVM(X,y,XX): model = SVC(c=5.0) model.fit(X,y) predicted = model.predict(XX) return predictedSVM Classifier using cross validation
def svm_cross_validation(train_x, train_y): from sklearn.grid_search import GridSearchCV from sklearn.svm import SVC model = SVC(kernel='rbf', probability=True) param_grid = {'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], 'gamma': [0.001, 0.0001]} grid_search = GridSearchCV(model, param_grid, n_jobs = 1, verbose=1) grid_search.fit(train_x, train_y) best_parameters = grid_search.best_estimator_.get_params() for para, val in list(best_parameters.items()): print(para, val) model = SVC(kernel='rbf', C=best_parameters['C'], gamma=best_parameters['gamma'], probability=True) model.fit(train_x, train_y) return modelLR
from sklearn.linear_model import LogisticRegressiondef LR(X,y,XX): model = LogisticRegression() model.fit(X,y) predicted = model.predict(XX) return predicted决策树(CART)
from sklearn.tree import DecisionTreeClassifierdef CTRA(X,y,XX): model = DecisionTreeClassifier() model.fit(X,y) predicted = model.predict(XX) return predicted随机森林
from sklearn.ensemble import RandomForestClassifierdef CTRA(X,y,XX): model = RandomForestClassifier() model.fit(X,y) predicted = model.predict(XX) return predictedGBDT(Gradient Boosting Decision Tree)
from sklearn.ensemble import GradientBoostingClassifierdef CTRA(X,y,XX): model = GradientBoostingClassifier() model.fit(X,y) predicted = model.predict(XX) return predicted朴素贝叶斯:一个是基于高斯分布求概率,一个是基于多项式分布求概率,一个是基于伯努利分布求概率。
from sklearn.naive_bayes import GaussianNBfrom sklearn.naive_bayes import MultinomialNBfrom sklearn.naive_bayes import BernoulliNBdef GNB(X,y,XX): model =GaussianNB() model.fit(X,y) predicted = model.predict(XX) return predicteddef MNB(X,y,XX): model = MultinomialNB() model.fit(X,y) predicted = model.predict(XX return predicteddef BNB(X,y,XX): model = BernoulliNB() model.fit(X,y) predicted = model.predict(XX return predicted更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python加密解密算法与技巧总结》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》
希望本文所述对大家Python程序设计有所帮助。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本文实例讲述了Python基于sklearn库的分类算法简单应用。分享给大家供大家参考,具体如下:scikit-learn已经包含在Anaconda中。也可以在
除了在Matlab中使用PRTools工具箱中的svm算法,Python中一样可以使用支持向量机做分类。因为Python中的sklearn库也集成了SVM算法,
除了在Matlab中使用PRTools工具箱中的svm算法,Python中一样可以使用支持向量机做分类。因为Python中的sklearn库也集成了SVM算法,
本文实例讲述了Python使用sklearn实现的各种回归算法。分享给大家供大家参考,具体如下:使用sklearn做各种回归基本回归:线性、决策树、SVM、KN
我简单的绘制了一下排序算法的分类,蓝色字体的排序算法是我们用python3实现的,也是比较常用的排序算法。Python3常用排序算法1、Python3冒泡排序—