Python之NumPy(axis=0 与axis=1)区分详解

时间:2021-05-22

python中的axis究竟是如何定义的呢?他们究竟代表是DataFrame的行还是列?考虑以下代码:

>>>df = pd.DataFrame([[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]], \columns=["col1", "col2", "col3", "col4"])>>>df col1 col2 col3 col4 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3

如果我们调用df.mean(axis=1),我们将得到按行计算的均值

>>> df.mean(axis=1)0 11 22 3

然而,如果我们调用 df.drop((name, axis=1),我们实际上删掉了一列,而不是一行:

>>> df.drop("col4", axis=1) col1 col2 col30 1 1 11 2 2 22 3 3 3

Can someone help me understand what is meant by an "axis" in pandas/numpy/scipy?

有人能帮我理解一下,在pandas、numpy、scipy三都当中axis参数的真实含义吗?

投票最高的答案揭示了问题的本质:

其实问题理解axis有问题,df.mean其实是在每一行上取所有列的均值,而不是保留每一列的均值。也许简单的来记就是axis=0代表往跨行(down),而axis=1代表跨列(across),作为方法动作的副词(译者注)

换句话说:

  • 使用0值表示沿着每一列或行标签\索引值向下执行方法
  • 使用1值表示沿着每一行或者列标签模向执行对应的方法

下图代表在DataFrame当中axis为0和1时分别代表的含义:

axis参数作用方向图示

另外,记住,Pandas保持了Numpy对关键字axis的用法,用法在Numpy库的词汇表当中有过解释:

轴用来为超过一维的数组定义的属性,二维数据拥有两个轴:第0轴沿着行的垂直往下,第1轴沿着列的方向水平延伸。

所以问题当中第一个列子 df.mean(axis=1)代表沿着列水平方向计算均值,而第二个列子df.drop(name, axis=1) 代表将name对应的列标签(们)沿着水平的方向依次删掉。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章