pytorch中获取模型input/output shape实例

时间:2021-05-22

Pytorch官方目前无法像tensorflow, caffe那样直接给出shape信息,详见

https://github.com/pytorch/pytorch/pull/3043

以下代码算一种workaround。由于CNN, RNN等模块实现不一样,添加其他模块支持可能需要改代码。

例如RNN中bias是bool类型,其权重也不是存于weight属性中,不过我们只关注shape够用了。

该方法必须构造一个输入调用forward后(model(x)调用)才可获取shape

#coding:utf-8from collections import OrderedDictimport torchfrom torch.autograd import Variableimport torch.nn as nnimport models.crnn as crnnimport json def get_output_size(summary_dict, output): if isinstance(output, tuple): for i in xrange(len(output)): summary_dict[i] = OrderedDict() summary_dict[i] = get_output_size(summary_dict[i],output[i]) else: summary_dict['output_shape'] = list(output.size()) return summary_dict def summary(input_size, model): def register_hook(module): def hook(module, input, output): class_name = str(module.__class__).split('.')[-1].split("'")[0] module_idx = len(summary) m_key = '%s-%i' % (class_name, module_idx+1) summary[m_key] = OrderedDict() summary[m_key]['input_shape'] = list(input[0].size()) summary[m_key] = get_output_size(summary[m_key], output) params = 0 if hasattr(module, 'weight'): params += torch.prod(torch.LongTensor(list(module.weight.size()))) if module.weight.requires_grad: summary[m_key]['trainable'] = True else: summary[m_key]['trainable'] = False #if hasattr(module, 'bias'): # params += torch.prod(torch.LongTensor(list(module.bias.size()))) summary[m_key]['nb_params'] = params if not isinstance(module, nn.Sequential) and \ not isinstance(module, nn.ModuleList) and \ not (module == model): hooks.append(module.register_forward_hook(hook)) # check if there are multiple inputs to the network if isinstance(input_size[0], (list, tuple)): x = [Variable(torch.rand(1,*in_size)) for in_size in input_size] else: x = Variable(torch.rand(1,*input_size)) # create properties summary = OrderedDict() hooks = [] # register hook model.apply(register_hook) # make a forward pass model(x) # remove these hooks for h in hooks: h.remove() return summary crnn = crnn.CRNN(32, 1, 3755, 256, 1)x = summary([1,32,128],crnn)print json.dumps(x)

以pytorch版CRNN为例,输出shape如下

{"Conv2d-1": {"input_shape": [1, 1, 32, 128],"output_shape": [1, 64, 32, 128],"trainable": true,"nb_params": 576},"ReLU-2": {"input_shape": [1, 64, 32, 128],"output_shape": [1, 64, 32, 128],"nb_params": 0},"MaxPool2d-3": {"input_shape": [1, 64, 32, 128],"output_shape": [1, 64, 16, 64],"nb_params": 0},"Conv2d-4": {"input_shape": [1, 64, 16, 64],"output_shape": [1, 128, 16, 64],"trainable": true,"nb_params": 73728},"ReLU-5": {"input_shape": [1, 128, 16, 64],"output_shape": [1, 128, 16, 64],"nb_params": 0},"MaxPool2d-6": {"input_shape": [1, 128, 16, 64],"output_shape": [1, 128, 8, 32],"nb_params": 0},"Conv2d-7": {"input_shape": [1, 128, 8, 32],"output_shape": [1, 256, 8, 32],"trainable": true,"nb_params": 294912},"BatchNorm2d-8": {"input_shape": [1, 256, 8, 32],"output_shape": [1, 256, 8, 32],"trainable": true,"nb_params": 256},"ReLU-9": {"input_shape": [1, 256, 8, 32],"output_shape": [1, 256, 8, 32],"nb_params": 0},"Conv2d-10": {"input_shape": [1, 256, 8, 32],"output_shape": [1, 256, 8, 32],"trainable": true,"nb_params": 589824},"ReLU-11": {"input_shape": [1, 256, 8, 32],"output_shape": [1, 256, 8, 32],"nb_params": 0},"MaxPool2d-12": {"input_shape": [1, 256, 8, 32],"output_shape": [1, 256, 4, 33],"nb_params": 0},"Conv2d-13": {"input_shape": [1, 256, 4, 33],"output_shape": [1, 512, 4, 33],"trainable": true,"nb_params": 1179648},"BatchNorm2d-14": {"input_shape": [1, 512, 4, 33],"output_shape": [1, 512, 4, 33],"trainable": true,"nb_params": 512},"ReLU-15": {"input_shape": [1, 512, 4, 33],"output_shape": [1, 512, 4, 33],"nb_params": 0},"Conv2d-16": {"input_shape": [1, 512, 4, 33],"output_shape": [1, 512, 4, 33],"trainable": true,"nb_params": 2359296},"ReLU-17": {"input_shape": [1, 512, 4, 33],"output_shape": [1, 512, 4, 33],"nb_params": 0},"MaxPool2d-18": {"input_shape": [1, 512, 4, 33],"output_shape": [1, 512, 2, 34],"nb_params": 0},"Conv2d-19": {"input_shape": [1, 512, 2, 34],"output_shape": [1, 512, 1, 33],"trainable": true,"nb_params": 1048576},"BatchNorm2d-20": {"input_shape": [1, 512, 1, 33],"output_shape": [1, 512, 1, 33],"trainable": true,"nb_params": 512},"ReLU-21": {"input_shape": [1, 512, 1, 33],"output_shape": [1, 512, 1, 33],"nb_params": 0},"LSTM-22": {"input_shape": [33, 1, 512],"0": {"output_shape": [33, 1, 512]},"1": {"0": {"output_shape": [2, 1, 256]},"1": {"output_shape": [2, 1, 256]}},"nb_params": 0},"Linear-23": {"input_shape": [33, 512],"output_shape": [33, 256],"trainable": true,"nb_params": 131072},"BidirectionalLSTM-24": {"input_shape": [33, 1, 512],"output_shape": [33, 1, 256],"nb_params": 0},"LSTM-25": {"input_shape": [33, 1, 256],"0": {"output_shape": [33, 1, 512]},"1": {"0": {"output_shape": [2, 1, 256]},"1": {"output_shape": [2, 1, 256]}},"nb_params": 0},"Linear-26": {"input_shape": [33, 512],"output_shape": [33, 3755],"trainable": true,"nb_params": 1922560},"BidirectionalLSTM-27": {"input_shape": [33, 1, 256],"output_shape": [33, 1, 3755],"nb_params": 0}}

以上这篇pytorch中获取模型input/output shape实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章