时间:2021-05-22
Pytorch中,变量参数,用numel得到参数数目,累加
def get_parameter_number(net): total_num = sum(p.numel() for p in net.parameters()) trainable_num = sum(p.numel() for p in net.parameters() if p.requires_grad) return {'Total': total_num, 'Trainable': trainable_num}Keras中,直接使用model的summary函数
model = k_model()model.summary()以上这篇PyTorch和Keras计算模型参数的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
深度学习中,模型训练完后,查看模型的参数量和浮点计算量,在此记录下:1THOP在pytorch中有现成的包thop用于计算参数数量和FLOP,首先安装thop:
用pytorch训练一个神经网络时,我们通常会很关心模型的参数总量。下面分别介绍来两种方法求模型参数一.求得每一层的模型参数,然后自然的可以计算出总的参数。1.
刚入pytorch的坑,代码还没看太懂。之前用keras用习惯了,第一次使用pytorch还有些不适应,希望广大老司机多多指教。首先说说,我们如何可视化模型。在
摘要:纯NumPy代码从头实现简单的神经网络。Keras、TensorFlow以及PyTorch都是高级别的深度学习框架,可用于快速构建复杂模型。前不久,我曾写
使用keras实现性别识别,模型数据使用的是oarriaga/face_classification的模型实现效果准备工作在开始之前先要安装keras和tens