时间:2021-05-22
Siamese网络不做过多介绍,思想并不难,输入两个图像,输出这两张图像的相似度,两个输入的网络结构是相同的,参数共享。
主要发现很多代码都是基于mnist数据集的,下面说一下怎么用自己的数据集实现siamese网络。
首先,先整理数据集,相同的类放到同一个文件夹下,如下图所示:
接下来,将pairs及对应的label写到csv中,代码如下:
import osimport randomimport csv#图片所在的路径path = '/Users/mac/Desktop/wxd/flag/category/'#files列表保存所有类别的路径files=[]same_pairs=[]different_pairs=[]for file in os.listdir(path): if file[0]=='.': continue file_path = os.path.join(path,file) files.append(file_path)#该地址为csv要保存到的路径,a表示追加写入with open('/Users/mac/Desktop/wxd/flag/data.csv','a') as f: #保存相同对 writer = csv.writer(f) for file in files: imgs = os.listdir(file) for i in range(0,len(imgs)-1): for j in range(i+1,len(imgs)): pairs = [] name = file.split(sep='/')[-1] pairs.append(path+name+'/'+imgs[i]) pairs.append(path+name+'/'+imgs[j]) pairs.append(1) writer.writerow(pairs) #保存不同对 for i in range(0,len(files)-1): for j in range(i+1,len(files)): filea = files[i] fileb = files[j] imga_li = os.listdir(filea) imgb_li = os.listdir(fileb) random.shuffle(imga_li) random.shuffle(imgb_li) a_li = imga_li[:] b_li = imgb_li[:] for p in range(len(a_li)): for q in range(len(b_li)): pairs = [] name1 = filea.split(sep='/')[-1] name2 = fileb.split(sep='/')[-1] pairs.append(path+name1+'/'+a_li[p]) pairs.append(path+name2+'/'+b_li[q]) pairs.append(0) writer.writerow(pairs)相当于csv每一行都包含一对结果,每一行有三列,第一列第一张图片路径,第二列第二张图片路径,第三列是不是相同的label,属于同一个类的label为1,不同类的为0,可参考下图:
然后,由于keras的fit函数需要将训练数据都塞入内存,而大部分训练数据都较大,因此才用fit_generator生成器的方法,便可以训练大数据,代码如下:
from __future__ import absolute_importfrom __future__ import print_functionimport numpy as npfrom keras.models import Modelfrom keras.layers import Input, Dense, Dropout, BatchNormalization, Conv2D, MaxPooling2D, AveragePooling2D, concatenate, \ Activation, ZeroPadding2Dfrom keras.layers import add, Flattenfrom keras.utils import plot_modelfrom keras.metrics import top_k_categorical_accuracyfrom keras.preprocessing.image import ImageDataGeneratorfrom keras.models import load_modelimport tensorflow as tfimport randomimport osimport cv2import csvimport numpy as npfrom keras.models import Modelfrom keras.layers import Input, Flatten, Dense, Dropout, Lambdafrom keras.optimizers import RMSpropfrom keras import backend as Kfrom keras.callbacks import ModelCheckpointfrom keras.preprocessing.image import img_to_array """自定义的参数"""im_width = 224im_height = 224epochs = 100batch_size = 64iterations = 1000csv_path = ''model_result = '' # 计算欧式距离def euclidean_distance(vects): x, y = vects sum_square = K.sum(K.square(x - y), axis=1, keepdims=True) return K.sqrt(K.maximum(sum_square, K.epsilon())) def eucl_dist_output_shape(shapes): shape1, shape2 = shapes return (shape1[0], 1) # 计算lossdef contrastive_loss(y_true, y_pred): '''Contrastive loss from Hadsell-et-al.'06 http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf ''' margin = 1 square_pred = K.square(y_pred) margin_square = K.square(K.maximum(margin - y_pred, 0)) return K.mean(y_true * square_pred + (1 - y_true) * margin_square) def compute_accuracy(y_true, y_pred): '''计算准确率 ''' pred = y_pred.ravel() < 0.5 print('pred:', pred) return np.mean(pred == y_true) def accuracy(y_true, y_pred): '''Compute classification accuracy with a fixed threshold on distances. ''' return K.mean(K.equal(y_true, K.cast(y_pred < 0.5, y_true.dtype))) def processImg(filename): """ :param filename: 图像的路径 :return: 返回的是归一化矩阵 """ img = cv2.imread(filename) img = cv2.resize(img, (im_width, im_height)) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = img_to_array(img) img /= 255 return img def Conv2d_BN(x, nb_filter, kernel_size, strides=(1, 1), padding='same', name=None): if name is not None: bn_name = name + '_bn' conv_name = name + '_conv' else: bn_name = None conv_name = None x = Conv2D(nb_filter, kernel_size, padding=padding, strides=strides, activation='relu', name=conv_name)(x) x = BatchNormalization(axis=3, name=bn_name)(x) return x def bottleneck_Block(inpt, nb_filters, strides=(1, 1), with_conv_shortcut=False): k1, k2, k3 = nb_filters x = Conv2d_BN(inpt, nb_filter=k1, kernel_size=1, strides=strides, padding='same') x = Conv2d_BN(x, nb_filter=k2, kernel_size=3, padding='same') x = Conv2d_BN(x, nb_filter=k3, kernel_size=1, padding='same') if with_conv_shortcut: shortcut = Conv2d_BN(inpt, nb_filter=k3, strides=strides, kernel_size=1) x = add([x, shortcut]) return x else: x = add([x, inpt]) return x def resnet_50(): width = im_width height = im_height channel = 3 inpt = Input(shape=(width, height, channel)) x = ZeroPadding2D((3, 3))(inpt) x = Conv2d_BN(x, nb_filter=64, kernel_size=(7, 7), strides=(2, 2), padding='valid') x = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='same')(x) # conv2_x x = bottleneck_Block(x, nb_filters=[64, 64, 256], strides=(1, 1), with_conv_shortcut=True) x = bottleneck_Block(x, nb_filters=[64, 64, 256]) x = bottleneck_Block(x, nb_filters=[64, 64, 256]) # conv3_x x = bottleneck_Block(x, nb_filters=[128, 128, 512], strides=(2, 2), with_conv_shortcut=True) x = bottleneck_Block(x, nb_filters=[128, 128, 512]) x = bottleneck_Block(x, nb_filters=[128, 128, 512]) x = bottleneck_Block(x, nb_filters=[128, 128, 512]) # conv4_x x = bottleneck_Block(x, nb_filters=[256, 256, 1024], strides=(2, 2), with_conv_shortcut=True) x = bottleneck_Block(x, nb_filters=[256, 256, 1024]) x = bottleneck_Block(x, nb_filters=[256, 256, 1024]) x = bottleneck_Block(x, nb_filters=[256, 256, 1024]) x = bottleneck_Block(x, nb_filters=[256, 256, 1024]) x = bottleneck_Block(x, nb_filters=[256, 256, 1024]) # conv5_x x = bottleneck_Block(x, nb_filters=[512, 512, 2048], strides=(2, 2), with_conv_shortcut=True) x = bottleneck_Block(x, nb_filters=[512, 512, 2048]) x = bottleneck_Block(x, nb_filters=[512, 512, 2048]) x = AveragePooling2D(pool_size=(7, 7))(x) x = Flatten()(x) x = Dense(128, activation='relu')(x) return Model(inpt, x) def generator(imgs, batch_size): """ 自定义迭代器 :param imgs: 列表,每个包含一对矩阵以及label :param batch_size: :return: """ while 1: random.shuffle(imgs) li = imgs[:batch_size] pairs = [] labels = [] for i in li: img1 = i[0] img2 = i[1] im1 = cv2.imread(img1) im2 = cv2.imread(img2) if im1 is None or im2 is None: continue label = int(i[2]) img1 = processImg(img1) img2 = processImg(img2) pairs.append([img1, img2]) labels.append(label) pairs = np.array(pairs) labels = np.array(labels) yield [pairs[:, 0], pairs[:, 1]], labels input_shape = (im_width, im_height, 3)base_network = resnet_50() input_a = Input(shape=input_shape)input_b = Input(shape=input_shape) # because we re-use the same instance `base_network`,# the weights of the network# will be shared across the two branchesprocessed_a = base_network(input_a)processed_b = base_network(input_b) distance = Lambda(euclidean_distance, output_shape=eucl_dist_output_shape)([processed_a, processed_b])with tf.device("/gpu:0"): model = Model([input_a, input_b], distance) # train rms = RMSprop() rows = csv.reader(open(csv_path, 'r'), delimiter=',') imgs = list(rows) checkpoint = ModelCheckpoint(filepath=model_result+'flag_{epoch:03d}.h5', verbose=1) model.compile(loss=contrastive_loss, optimizer=rms, metrics=[accuracy]) model.fit_generator(generator(imgs, batch_size), epochs=epochs, steps_per_epoch=iterations, callbacks=[checkpoint])用了回调函数保存了每一个epoch后的模型,也可以保存最好的,之后需要对模型进行测试。
测试时直接用load_model会报错,而应该变成如下形式调用:
model = load_model(model_path,custom_objects={'contrastive_loss': contrastive_loss }) #选取自己的.h模型名称
emmm,到这里,就成功训练测试完了~~~写的比较粗,因为这个代码在官方给的mnist上的改动不大,只是方便大家用自己的数据集,大家如果有更好的方法可以提出意见~~~希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
Mac#数据集~/.keras/datasets/#模型~/.keras/models/Linux#数据集~/.keras/datasets/Windows#w
这里我们使用keras定义简单的神经网络全连接层训练MNIST数据集和cifar10数据集:keras_mnist.pyfromsklearn.preproce
keras的数据集源码下载地址太慢。尝试过修改源码中的下载地址,直接报错。从源码或者网络资源下好数据集,下载好以后放到目录~/.keras/datasets/下
现在的许多手写字体识别代码都是基于已有的mnist手写字体数据集进行的,而kaggle需要用到网站上给出的数据集并生成测试集的输出用于提交。这里选择keras搭
使用keras实现性别识别,模型数据使用的是oarriaga/face_classification的模型实现效果准备工作在开始之前先要安装keras和tens