时间:2021-05-22
本笔记目的是通过tensorflow实现一个两层的神经网络。目的是实现一个二次函数的拟合。
如何添加一层网络
代码如下:
def add_layer(inputs, in_size, out_size, activation_function=None): # add one more layer and return the output of this layer Weights = tf.Variable(tf.random_normal([in_size, out_size])) biases = tf.Variable(tf.zeros([1, out_size]) + 0.1) Wx_plus_b = tf.matmul(inputs, Weights) + biases if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b) return outputs注意该函数中是xW+b,而不是Wx+b。所以要注意乘法的顺序。x应该定义为[类别数量, 数据数量], W定义为[数据类别,类别数量]。
创建一些数据
# Make up some real datax_data = np.linspace(-1,1,300)[:, np.newaxis]noise = np.random.normal(0, 0.05, x_data.shape)y_data = np.square(x_data) - 0.5 + noisenumpy的linspace函数能够产生等差数列。start,stop决定等差数列的起止值。endpoint参数指定包不包括终点值。
noise函数为添加噪声所用,这样二次函数的点不会与二次函数曲线完全重合。
numpy的newaxis可以新增一个维度而不需要重新创建相应的shape在赋值,非常方便,如上面的例子中就将x_data从一维变成了二维。
添加占位符,用作输入
# define placeholder for inputs to networkxs = tf.placeholder(tf.float32, [None, 1])ys = tf.placeholder(tf.float32, [None, 1])添加隐藏层和输出层
# add hidden layerl1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)# add output layerprediction = add_layer(l1, 10, 1, activation_function=None)计算误差,并用梯度下降使得误差最小
# the error between prediciton and real dataloss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),reduction_indices=[1]))train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)完整代码如下:
from __future__ import print_functionimport tensorflow as tfimport numpy as npimport matplotlib.pyplot as pltdef add_layer(inputs, in_size, out_size, activation_function=None): # add one more layer and return the output of this layer Weights = tf.Variable(tf.random_normal([in_size, out_size])) biases = tf.Variable(tf.zeros([1, out_size]) + 0.1) Wx_plus_b = tf.matmul(inputs, Weights) + biases if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b) return outputs# Make up some real datax_data = np.linspace(-1,1,300)[:, np.newaxis]noise = np.random.normal(0, 0.05, x_data.shape)y_data = np.square(x_data) - 0.5 + noise# define placeholder for inputs to networkxs = tf.placeholder(tf.float32, [None, 1])ys = tf.placeholder(tf.float32, [None, 1])# add hidden layerl1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)# add output layerprediction = add_layer(l1, 10, 1, activation_function=None)# the error between prediciton and real dataloss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), reduction_indices=[1]))train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)# important stepinit = tf.initialize_all_variables()sess = tf.Session()sess.run(init)# plot the real datafig = plt.figure()ax = fig.add_subplot(1,1,1)ax.scatter(x_data, y_data)plt.ion()plt.show()for i in range(1000): # training sess.run(train_step, feed_dict={xs: x_data, ys: y_data}) if i % 50 == 0: # to visualize the result and improvement try: ax.lines.remove(lines[0]) except Exception: pass prediction_value = sess.run(prediction, feed_dict={xs: x_data}) # plot the prediction lines = ax.plot(x_data, prediction_value, 'r-', lw=5) plt.pause(0.1)运行结果:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本文实例为大家分享了Tensorflow实现神经网络拟合线性回归的具体代码,供大家参考,具体内容如下一、利用简单的一层神经网络拟合一个函数y=x^2,其中加入部
前言在tensorflow的官方文档中得卷积神经网络一章,有一个使用cifar-10图片数据集的实验,搭建卷积神经网络倒不难,但是那个cifar10_input
终于构建出了第一个神经网络,Keras真的很方便。之前不知道Keras这么方便,在构建神经网络的过程中绕了很多弯路,最开始学的TensorFlow,后来才知道K
一、TensorFlow模型保存和提取方法1.TensorFlow通过tf.train.Saver类实现神经网络模型的保存和提取。tf.train.Saver对
逻辑回归是机器学习中很简答的一个栗子,这篇文章就是要介绍如何使用tensorflow实现一个简单的逻辑回归算法。逻辑回归可以看作只有一层网络的前向神经网络,并且