浅谈利用numpy对矩阵进行归一化处理的方法

时间:2021-05-22

本文不讲归一化原理,只介绍实现(事实上看了代码就会懂原理),代码如下:

def Normalize(data): m = np.mean(data) mx = max(data) mn = min(data) return [(float(i) - m) / (mx - mn) for i in data]

代码只有5行并不复杂,但是需要注意的一点是一定要将计算的均值以及矩阵的最大、最小值存为变量放到循环里,如果直接在循环里计算对应的值会造成归一化特别慢,笔者之前有过深切的酸爽体验….

以上这篇浅谈利用numpy对矩阵进行归一化处理的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章