时间:2021-05-22
numpy.where (condition[, x, y])
numpy.where() 有两种用法:
满足条件(condition),输出x,不满足输出y。
如果是一维数组,相当于[xv if c else yv for (c,xv,yv) in zip(condition,x,y)]
>>> aa = np.arange(10)>>> np.where(aa,1,-1)array([-1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) # 0为False,所以第一个输出-1>>> np.where(aa > 5,1,-1)array([-1, -1, -1, -1, -1, -1, 1, 1, 1, 1])>>> np.where([[True,False], [True,True]], # 官网上的例子 [[1,2], [3,4]], [[9,8], [7,6]])array([[1, 8], [3, 4]])上面这个例子的条件为[[True,False], [True,False]],分别对应最后输出结果的四个值。第一个值从[1,9]中选,因为条件为True,所以是选1。第二个值从[2,8]中选,因为条件为False,所以选8,后面以此类推。类似的问题可以再看个例子:
>>> a = 10>>> np.where([[a > 5,a < 5], [a == 10,a == 7]], [["chosen","not chosen"], ["chosen","not chosen"]], [["not chosen","chosen"], ["not chosen","chosen"]])array([['chosen', 'chosen'], ['chosen', 'chosen']], dtype='<U10')只有条件 (condition),没有x和y,则输出满足条件 (即非0) 元素的坐标 (等价于numpy.nonzero)。这里的坐标以tuple的形式给出,通常原数组有多少维,输出的tuple中就包含几个数组,分别对应符合条件元素的各维坐标。
>>> a = np.array([2,4,6,8,10])>>> np.where(a > 5) # 返回索引(array([2, 3, 4]),) >>> a[np.where(a > 5)] # 等价于 a[a>5]array([ 6, 8, 10])>>> np.where([[0, 1], [1, 0]])(array([0, 1]), array([1, 0]))上面这个例子条件中[[0,1],[1,0]]的真值为两个1,各自的第一维坐标为[0,1],第二维坐标为[1,0] 。
下面看个复杂点的例子:
>>> a = np.arange(27).reshape(3,3,3)>>> aarray([[[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8]], [[ 9, 10, 11], [12, 13, 14], [15, 16, 17]], [[18, 19, 20], [21, 22, 23], [24, 25, 26]]])>>> np.where(a > 5)(array([0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2]), array([2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2]))# 符合条件的元素为 [ 6, 7, 8]], [[ 9, 10, 11], [12, 13, 14], [15, 16, 17]], [[18, 19, 20], [21, 22, 23], [24, 25, 26]]]所以np.where会输出每个元素的对应的坐标,因为原数组有三维,所以tuple中有三个数组。
np.where和np.searchsorted同属于Numpy数组搜索的一部分,这里先介绍简单的where
import numpy as npa = np.array([1, 2, 3, 4, 5])b = np.where(a == 5)print(b)where方法将会返回一个元祖
(array([4]),)此外还将介绍一个搜索奇数和偶数的方法(数组全都默认使用最上面的a数组)
可见,简单的判断余数即可
c = np.where(a%2 == 0)print(c)d = np.where(a%2 == 1)print(d)返回:
(array([1, 3]),)(array([0, 2, 4]),)关于np.where方法到这里就结束啦
到此这篇关于Numpy中的数组搜索中np.where方法详细介绍的文章就介绍到这了,更多相关Numpy np.where 内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本文主要介绍了np.where()[0]和np.where()[1]的具体使用,以及np.where()的具体用法,废话不多说,具体如下:importnumpy
近日用到numpy.where()函数,大部分使用方式都能理解,但是在看>>>x=np.arange(9.).reshape(3,3)>>>np.where(x
Python中numpy数组的合并有很多方法,如-np.append()-np.concatenate()-np.stack()-np.hstack()-np.
目前搜索到的方法有:np.where(‘元素')还有就是pandas的方法:df.index(‘元素')但是第二个方法的问题就是会报错,嗯,这就比较尴尬了,查询
我就废话不多说了,大家还是直接看代码吧!print("thresh=",thresh)coords=np.column_stack(np.where(thres