时间:2021-05-22
numpy数组的广播功能强大,但是也同时让人疑惑不解,现在让我们来谈谈其中的原理。
广播原则:
如果两个数组的后缘维度(即:从末尾开始算起的维度)的轴长相符或其中一方的长度为1,则认为它们是广播兼容的,广播会在缺失和(或)长度为1的轴上进行.
上面的原则很重要,是广播的指导思想,下面我们来看看例子。
1.其实在最简单的数组与标量数字之间的运算就存在广播,只是我们把它看作理所当然了。
2.再看下一个例子,这个大家都会一致认为这是广播了
根据广播原则:arr1的shape为(4,1),arr2的shape为(3,),所以会同时在两个轴发生广播,arr1的shape变成(4,3),而arr2的shape变成(4,3),所以结果也为(4,3).
其实代码中发生了下图描述的事情:
3.同理,我们可以得到三维数组的广播情况
根据广播原则分析:arr1的shape为(3,4,2),arr2的shape为(4,2),它们的后缘轴长度都为(4,2),所以可以在0轴进行广播,arr2的shape变为(3,4,2).
下面说明一下三维数组在各维度的广播形状需求:
以上所有形状都可以发生广播,你可以用我们开篇所说的广播原则进行验证。
最后,再来说一个易错的实际例子。
arr减去他在1轴上的平均值,会出错?看看为啥。
因为arr.mean(1)产生的shape为(4,),根据广播原则,较小的数组的后缘维度必须为1,
所以需要将arr.mean变成(4,1),你所期望的结果如下:
参考:《利用Python进行数据分析》
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
前言Numpy数组不需要循环遍历,即可对每个元素执行批量的算术运算操作(矢量化运算)。当两个数组大小(Numpy.shape)不同时,进行算术运算会出现广播机制
numpy.amin()和numpy.amax()numpy.amin()用于计算数组中元素沿着指定轴的最小值。numpy.amax()用于计算数组中元素沿着指
1.对于RGB三通道图片,直接用两层for循环的话,效率比较低2.可以先将RGB图片转为灰度图片,再利用numpy.where的广播机制统计像素个数。这里有一个
本文实例讲述了Android基于广播事件机制实现简单定时提醒功能代码。分享给大家供大家参考,具体如下:1.Android广播事件机制Android的广播事件处理
在实际使用numpy时,我们常常会使用numpy数组的-1维度和”:”用以调用numpy数组中的元素。也经常因为数组的维度而感到困惑。总体来说,”:”用以表示当