时间:2021-05-22
opencv 进行任意形状目标识别,供大家参考,具体内容如下
工作中有一次需要在简单的图上进行目标识别,目标的形状不固定,并且存在一定程度上的噪声影响,但是噪声影响不确定。这是一个简单的事情,因为图像并不复杂,现在将代码公布如下:
import cv2def otsu_seg(img): ret_th, bin_img = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU) return ret_th, bin_imgdef find_pole(bin_img): img, contours, hierarchy = cv2.findContours(bin_img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) area = 0 for i in range(len(contours)): area += cv2.contourArea(contours[i]) area_mean = area / len(contours) mark = [] for i in range(len(contours)): if cv2.contourArea(contours[i]) < area_mean: mark.append(i) return img, contours, hierarchy, markdef draw_box(img,contours): img = cv2.rectangle(img, (contours[0][0], contours[0][1]), (contours[1][0], contours[1][1]), (255,255,255), 3) return imgdef main(img): ret, th = otsu_seg(img) img_new, contours, hierarchy, mark = find_pole(th) for i in range(len(contours)): if i not in mark: left_point = contours[i].min(axis=1).min(axis=0) right_point = contours[i].max(axis=1).max(axis=0) img = draw_box(img, (left_point, right_point)) return imgif __name__ =="__main__": img = cv2.imread('G:/test.png') img = main(img) cv2.imwrite('G:/test_d.png', img)结果图如下:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
利用Opencv中的Houghline方法进行直线检测—python语言这是给Python部落翻译的文章,请在这里看原文。在图像处理中,霍夫变换用来检测任意能够
本文实例为大家分享了Opencv使用鼠标任意形状抠图的具体代码,供大家参考,具体内容如下主要的方法思路是:首先利用鼠标在图上画任意形状,利用掩码将任意形状抠出来
本文实例为大家分享了Python基于OpenCV实现人脸检测,并保存的具体代码,供大家参考,具体内容如下安装opencv如果安装了pip的话,Opencv的在w
花瓣形状是许多形状中最为好看的一种,整体比较讲究旋转对称。下面,我就给大家说说如何绘制花瓣形状。1、首先,打开visio软件,新建一个“基本框图&r
python+opencv车道线检测(简易实现),供大家参考,具体内容如下技术栈:python+opencv实现思路:1、canny边缘检测获取图中的边缘信息;